Skip to main content

Torpor in the Carnivorous Marsupial Sminthopsis macroura: Effects of Food Quality and Quantity

  • Conference paper
Life in the Cold

Abstract

The effects of food quality (dietary protein content) and food quantity (ad lib vs food-restriction) on torpor were determined in six stripe-faced dunnarts (Sminthopsis macroura) by measuring metabolic rate (MR) at Ta of 18°C. The aims of the study were to determine whether increased dietary protein content delays the commencement of torpor and reduces the duration of torpor and whether food restriction induces torpor earlier and for a longer period. There was no effect of dietary protein content on torpor, irrespective of whether S. macroura were food-restricted or whether food was available ad lib. Torpor in foodrestricted S. macroura occurred earlier, was deeper and lasted longer. Food-restricted S. macroura lost less weight during torpor. Food-restriction also reduced average daily metabolic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agid R, Ambid L, Sable R and Sicart R (1978) Aspects of metabolic and endocrine changes in hibernation. In: Wang LCH, Hudson J (eds) Strategies in cold: natural torpidity and thermogenesis. Academic Press, New York, pp 499–540

    Chapter  Google Scholar 

  • Collins BG, Wooller R, Richardson KC (1987) Torpor by the honey possum, Tarsipes rostratus (Marsupialia: tarsipedidae), in response to food shortage and low environmental temperature. Aust Mammal 11: 51–57

    Google Scholar 

  • Dark J, Miller DR, Zucker I (1994) Reduced glucose availability induces torpor in Siberian Hamsters. Am J Physiol 267 (Regulatory Integrative Comp Physiol 36: R496-R501

    PubMed  CAS  Google Scholar 

  • Dawson TJ (1989) Responses to cold in monotremes and marsupials. In: Wang LCH (ed) Advances in Comparative and Environmental Physiology. Springer, Berlin, pp 255–288

    Google Scholar 

  • Frey H (1991) Energy significance of torpor and other energy-conserving mechanisms in freeliving Sminthopsis crassicaudata (Marsupialia: Dasyuridae). Aust J Zool 39: 689–708

    Article  Google Scholar 

  • Galster W, Morrison PR (1975) Gluconeogenesis in arctic ground squirrels between periods of hibernation. Am J Physiol 228(1): 325–330

    PubMed  CAS  Google Scholar 

  • Geiser F (1994) Hibernation and daily torpor in marsupials: a review. Aust J Zool 42: 1–16

    Article  Google Scholar 

  • Geiser F, Baudinette RV (1985) The influence of temperature and photophase on daily torpor in Sminthopsis macroura (Dasyuridae: Marsupialia) J Comp Physiol B 156: 129–134

    Article  Google Scholar 

  • Geiser F, Baudinette RV (1987) Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol B 157: 335–344

    Article  Google Scholar 

  • Geiser F, Kortner G, Schmidt I (1998) Leptin increases energy expenditure of a marsupial by inhibition of daily torpor. Am J Physiol 275 (Regulatory Integrative Comp Physiol 44): R1627-R1632

    PubMed  CAS  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: Physiological variables and classification of torpor patterns. Physiol Zool 68(6): 935–966

    Google Scholar 

  • Geiser F, Stahl B, Learmonth RP (1992) The effect of dietary fatty acids on the pattern of torpor in a marsupial. Physiol Zool 65: 1236–1245

    CAS  Google Scholar 

  • Godfrey G (1968) Body-temperatures and torpor in Sminthopsis crassicaudata and S. larapinta (Marsupialia-Dasyuridae) J Zool Lond 156: 499–511

    Article  Google Scholar 

  • Heldmaier G, Steinlechner S (1981) Seasonal pattern and energetics of short daily torpor in the Djungarian Hamster, Phodopus sungorus. Oecologia 48: 265–270

    Article  Google Scholar 

  • Hiebert SM (1990) Energy costs and temporal organization of torpor in the rufous hummingbirds Selaphorus rufus. Physiol Zool 63: 1082–1097

    Google Scholar 

  • Hill RW (1975) Daily torpor in Peromyscus leucopus on an adequate diet. Comp Biochem Physiol 51A: 413–423

    Article  Google Scholar 

  • Hume ID (1999) Marsupial Nutrition. Cambridge University Press, Cambridge

    Google Scholar 

  • Hudson JW (1965) Temperature regulation and torpidity in the pygmy mouse, Baiomys taylori. Physiol Zool 38: 243–254

    Google Scholar 

  • Kristoffersson R (1963) Urea-levels in blood and tissues of hibernating and non-hibernating hedgehogs. Nature 197:402–403.

    Article  PubMed  CAS  Google Scholar 

  • Montoya R, Ambid L, Agid R (1979) Torpor induced at any season by suppression of food proteins in a hibernator, the garden dormouse (Eliomys quercinus l). Comp Biochem Physiol 62(2) 371–376.

    Article  Google Scholar 

  • Morton SR (1982) Dasyurid marsupials of the Australian arid zone: an ecological review. In: Archer M (ed) Carnivorous Marsupials. R Zool Soc NSW, Sydney, pp 117–130

    Google Scholar 

  • Morton SR, Denny MJS, Read DG (1983) Habitat preferences and diets of sympatric Sminthopsis crassicaudata and S. macroura (Marsupialia: Dasyuridae). Aust Mammal 6: 29–34

    Google Scholar 

  • Passmore JC, Pfeiffer EW, Templeton JR (1975) Urea excretion in the hibernating Columbian ground squirrel Spermophilus columbianus. J Expt Zool 192: 83–86

    Article  CAS  Google Scholar 

  • Pengelly ET, Fisher KC (1961) Rhythmical arousal from hibernation in the Golden-mantled ground squirrel Citellus lateralis tescorum. Can J Zool 39: 105–120

    Article  Google Scholar 

  • Redford KH, Dorea JG (1984) The Nutritional value of invertebrates with emphasis on ants and termites as food for mammals. J Zool Lond 203: 385–395

    Article  CAS  Google Scholar 

  • Ruf T, Heldmaier G (1992) The impact of daily torpor on energy requirements in the Djungarian hamster, Phodopus sungorus. Physiol Zool 65(5): 994–1010

    Google Scholar 

  • Ruf T, Klingenspor M, Preis H, Heldmaier G (1991) Daily torpor in the Djungarian hamster (Phodopus sungorus): Interactions with food intake, activity, and social behaviour. J Comp Physiol B 160: 609–615

    Article  Google Scholar 

  • Sheafor BA, Snyder GK (1996) Energy partitioning in torpor-sensitive and torpor-resistant deer mice (Peromyscus manuculatus). Can J Zool 74: 1179–1186

    Article  Google Scholar 

  • Song X, Geiser F (1997) Daily torpor and energy expenditure in Sminthopsis macroura: Interactions between food and water availability and temperature. Physiol Zool 70: 331–337

    PubMed  CAS  Google Scholar 

  • Strahan R, (ed) (1991) The Australian museum Complete book of Australian mammals. Collins Angus and Robertson, Sydney

    Google Scholar 

  • Statham HL (1982) Antechinus stuartii (Dasyuridae, Marsupialia) Diet and food availability at Petroi, Northeastern New South Wales. In: Archer M (ed) Carnivorous Marsupials. R Zool Soc NSW, Sydney, pp l51–163

    Google Scholar 

  • Tannenbaum MG, Pivorun (1984) Differences in daily torpor patterns among three species of Peromyscus. J Comp Physiol B 154: 233–236

    Article  Google Scholar 

  • Tannenbaum MG, Pivorun (1988) Seasonal study of daily torpor in southeastern Peromyscus maniculatus and Peromyscus leucopus from mountains and foothills. Physiol Zool 61(1): 10–16

    Google Scholar 

  • Tucker V (1966) Diurnal torpor and its relation to food consumption and weight changes in the California pocket mouse Perognathus californicus. Ecology 47(2): 245–252

    Article  Google Scholar 

  • Withers KW, Billingsley J, Hirning D, Young A, McConnell, P, Carlin S (1996) Torpor in Sminthopsis macroura: effects of dietary fatty acids. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the Cold: Tenth International Hibernation Symposium. University of New England Press, Armidale, pp 95–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Withers, K.W., White, D.H., Billingsley, J. (2000). Torpor in the Carnivorous Marsupial Sminthopsis macroura: Effects of Food Quality and Quantity. In: Heldmaier, G., Klingenspor, M. (eds) Life in the Cold. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04162-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04162-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08682-3

  • Online ISBN: 978-3-662-04162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics