Skip to main content

Ruminants and Other Animals

  • Chapter
Atmospheric Methane

Abstract

Animal methane emissions originate from two sources. Methane is produced through microbial digestion of feeds in the animals digestive tract, where energy loss ranges from zero to nearly 12% of dietary energy. The second source is from microbial degradation of excreted residues in manure. This paper will explore explanations for the observed variation and provide estimates of total emissions. Emphasis will be placed on ruminants which account for approximately 95% of animal methane emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abo-Omar, J. M. 1989. Methane losses by steers fed ionophores singly or alternatively, Ph.D. Dissertation, Colorado State University, Fort Collins.

    Google Scholar 

  • Armstrong, D. G. 1964. Evaluation of artificially dried grass as a source of energy for sheep, II. The energy value of cocksfoot, timothy, and two strains of ryegrass at varying stages of maturity. J. Agric. Sci. (Comb), 62: 399.

    Article  Google Scholar 

  • Bauchop, T. Foregut fermentation. 1977. In: Microbial Ecology of the Gut (R.T.J. Clarke and T. Bauchop, eds. ), Academic Press.

    Google Scholar 

  • Benz, D. A., D. E. Johnson, 1982. The effect of monensin on energy partitioning by forage fed steers. Proc. West Sec. Amer. Soc. Anim. Sci. 33: 60.

    Google Scholar 

  • Birkelo, C. P., D. E. Johnson, and G. M. Ward. 1986. Net energy value of ammoniated wheat straw. J. Anim. Sci. 63: 2044.

    Google Scholar 

  • Blake, D. R. 1984. Increasing concentrations of atmospheric methane. Ph.D. Dissertation, University of California at Irvine. Pp. 213.

    Google Scholar 

  • Blaxter, K. L., and N. McGraham. 1956. The effect of the grinding and cubing process on the utilization of the energy of dried grass. J. Agric. Sci. (Camb.), 47: 207.

    Article  Google Scholar 

  • Blaxter, K. L., and F. W. Wainman. 1964. The utilization of the energy of different rations by sheep and cattle for maintenance and fitting. J. Agric. Sci. (Camb.), 63: 113.

    Article  Google Scholar 

  • Blaxter, K. L., and J. L. Clapperton. 1965. Prediction of the amount of methane produced by ruminants. Brit. J. Nutr., 19: 511.

    Article  Google Scholar 

  • Byers, F. 1974. The importance of associative effects of feeds on corn silage and corn grain net energy values. Ph.D. Dissertation, Colorado State University, Fort Collins.

    Google Scholar 

  • Cammell, S. B., D. E. Beever, K. V. Skelton, and M. C. Spooner. 1980. The construction of open circuit chambers for measuring gaseous exchange and heat production on sheep and young cattle. Lab. Pract. 30: 115.

    Google Scholar 

  • Carmean, B. R. 1991. Persistence of monensin effects on nutrient flux in steers. M.S. Thesis, Colorado State University, Ft. Collins.

    Google Scholar 

  • Carmean, B. R., and D. E. Johnson. 1990. Persistence of monensin-induced changes in methane emissions and ruminai protozoa numbers in cattle. J. Anim. Sci., 65: (Supp. 1): 517.

    Google Scholar 

  • Carmean, B. R., K. A. Johnson, and D. E. Johnson. 1991. Maintenance energy requirements of the llama. Am. J. Vet. Res., 53: 1696.

    Google Scholar 

  • Corbett, J. L., J. P. Langlands, I. McDonald and J. D. Pullar. 1966. Comparison by direct animal calorimetry of the net energy values of an early and a late season of growth of herbage. Anim. Prod. 8: 13.

    Article  Google Scholar 

  • Crutzen, P. J., I. Aselmann, and W. Seiler. 1986. Methane production by domestic animals, wild ruminants, and other herbivorous fauna and humans. TELL US, 38B: 271.

    Article  Google Scholar 

  • Czerkawski, J. W. 1972. Fate of metabolic hydrogen in the rumen. Proc. Nutr. Soc., 31: 141.

    Article  Google Scholar 

  • Czerkawski, J. W. 1978. Transfer of metabolic hydrogen in the rumen. In: J. H. Moore and A. F. Rook, Eds. The Hannah Research Institute 1928–1978. The Hannah Research Institute, Ayr, Scotland.

    Google Scholar 

  • Czerkawski, J. W. 1988. An Introduction to Rumen Studies, Pergamon Press, Oxford

    Google Scholar 

  • Czerkawski, J. W. and G. Breckenridge. 1975a. New inhibitors of methane production by rumen micro-organisms. Development and testing of inhibitors in vitro. Brit. J. Nutr., 34: 429.

    Google Scholar 

  • Czerkawski, J. W., and G. Breckenridge. 1975b. New inhibitors of methane production by rumen-micro-organisms. Development and testing of inhibitors in vitro. Brit. J. Nutr., 34: 447.

    Google Scholar 

  • Czerkawksi, J. W., K. L. Blaxter, and F. W. Wainman. 1966. The metabolism of oleic, linoleic, and linolenic acids by sheep with reference to their effects on methane production. Brit. J. Nutr., 20: 349.

    Article  Google Scholar 

  • Delfino, J., G. W. Mathison, and M. W. Smith. 1988. Effect of lasalocid on feedlot performance and energy partitioning in cattle. J. Anim. Sci., 66: 136.

    Google Scholar 

  • Denmead, O. T., L. A. Harper, J. R. Freney, D. W. Griffeth, R. Leuning, and F. R. Sharpe. 1998. A mass balance method for non-intrusive measurements of surface-air trace gas exchange. Atmos. Environ., 32 (21): 3679–3688.

    Article  Google Scholar 

  • Ehhalt, D. H. 1974. The atmospheric cycle of methane. TELLUS, 26: 58–69.

    Article  Google Scholar 

  • Ehhalt, D. H., and U. Schmidt. 1978. Sources and sinks of atmospheric methane. PAGEOPH, 116: 452–464.

    Article  Google Scholar 

  • EPA. 1994. International Anthropogenic Methane Emissions: Estimates for 1990, EPA-230R-93–010. U.S. EPA, Washington, D.C.

    Google Scholar 

  • Fyan, T., D. C. Patterson, F. J. Gordon, and M. G. Porter. 1996. The effects of wilting of grass prior to ensiling on the response to bacterial inoculation. 1. Silage fermentation and nutrient utilization over three harvests. An. Sci. (Pencaitland) 62: 405.

    Google Scholar 

  • FAO. 1996. Food and Agricultural Production Yearbook, Vol. 50.

    Google Scholar 

  • Flatt, W. P., P. J. Van Soest, J. F. Sykes, and L. A. Moore. 1958. A description of the energy metabolism laboratory at the U.S. Department of Agriculture, Agricultural Research Center in Beltsville, MD. In: G. Torbeck and H. Aersoe (Eds.) I. A Symposium on energy metabolism: principles, methods and general aspects. Statens Husdyrbrugsudvalg, Copenhagen, Denmark. 53.

    Google Scholar 

  • France, J., D. E. Beever, and R. C. Siddons. 1993. Compartmental schemes for estimating methanogenesis in ruminants from isotope dilution data. J. Theor. Biol. 164: 207.

    Article  Google Scholar 

  • Gibbs, M. J., and D. E. Johnson. 1993. Livestock Emissions. In: International Anthropogenic Emissions of Methane, EPA 430-R-93–003. U.S. EPA, Washington, D.C.

    Google Scholar 

  • Gibbs, M., and R. L. Baldwin. 1994. Inventory of U.S. greenhouse gas emissions and syncs. EPA 230-R-94–014.

    Google Scholar 

  • Goodrich, R. D., J. E. Garrett, D. R. Gast, M. A. Kirick, D. A. Larson, and J. C.. Meiske. 1984. Influence of monensin on the performance of cattle. J. Anim. Sci., 58: 1, 484.

    Google Scholar 

  • Haaland, G. L. 1978. Protected fat in bovine rations. Ph.D. Dissertation, Colorado State University, Fort Collins.

    Google Scholar 

  • Hackstein, J. H. P., and T. A. van Alen. 1996. Fecal methanogens and vertebrate evolution. Evolution. 50 (2): 559–572.

    Article  Google Scholar 

  • Hashimoto, A. G., V. H. Varel, and Y. R. Chen. 1981. Ultimate methane yield from beef cattle manure: Effect of temperature, ration instruments, antibiotics and manure age. Agricultural Waste, 3: 241, 1981.

    Google Scholar 

  • Hashizume, T., H. Morimoto, T. Hayer, M. Itch, and S. Tanabe. 1967. Utilization of the energy of fattening rations containing ground or steam-rolled barley by Japanese Black Breed Cattle. 41h Energy Symp., EAAP, 12: 261.

    Google Scholar 

  • Hintz, H. F., D. E. Hogue, E. F. Walker, J. E. Lowe, and H. F. Schryver. 1971. Apparent digestibility in various segments of the digestive tract of ponies fed diets with varying roughage-grain ratios. J. Anim. Sci., 32: 245–248.

    Google Scholar 

  • Hoernecke, H., W. F. Williams, D. R. Waldo, and W. P. Flyatt. 1964. Composition and absorption of rumen gases and their importance for the accuracy of respiration trials with tracheostomized ruminants. Symposium on Energy Metabolism, EAAP.

    Google Scholar 

  • Hutcheson, J. P. 1994. Anabolic implant effects on body composition, visceral organ mass and energetics of beef steers. Dissertation, Colorado State University.

    Google Scholar 

  • IPCC. 1995. Mitigation options in Agriculture, Coal, V. (ed.) Cambridge University Press.

    Google Scholar 

  • Itabashi, H., T. Kobayashi, and M. Matsumoto. 1984. The effects of rumen protozoa on energy metabolism and some constituents in rumen fluid and blood plasma of goats. Jap. J. Zootechnic Sci. 55: 248.

    Google Scholar 

  • Johnson, D. E. 1966. Utilization of flaked corn by steers. Ph.D. Dissertation, Colorado State University, Fort Collins.

    Google Scholar 

  • Johnson, D. E. 1972. Effects of a hemiacetal of chloral and starch on methane production and energy balance of sheep fed a pelleted diet. J. Anim. Sci., 35: 1, 064.

    Google Scholar 

  • Johnson, D. E. 1974. Adaptational responses in nitrogen and energy balance of lambs fed a methane inhibitor. J. Anim. Sci., 38: 154.

    Google Scholar 

  • Johnson, D. E., A. S. Wood, J. B. Stone, and E. T. Moran, Jr. 1972. Some effects of methane inhibition in ruminants. Can. J. Anim. Sci., 52: 703.

    Article  Google Scholar 

  • Johnson, K. A., and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci., 73: 2483.

    Google Scholar 

  • Johnson, D. E. 1986. Fundamentals of whole animal calorimetry: use in monitoring body tissue deposition. J. Anim. Sci. 63 (Suppl. 2): 111.

    Google Scholar 

  • Johnson, D. E., T. M. Hill, G. M. Ward, K. A. Johnson, M. E. Branine, B. R. Carmean, and D. W. Lodman. 1993. Chapter. 11. Ruminants and Other Animals, In: Atmospheric Methane: Sources, Sinks, and Role in Global Change, ed. M.A.K. Khalil, Springer-Verlag, Berlin.

    Google Scholar 

  • Johnson, D. E., J. S. Abo-Omar, C.F. Saa, and B. R. Carmean. 1994a. Persistence of methane suppression by propionate enhancers in cattle diets. In: Energy Metabol. Of Farm Animals., Ed. J.F. Aguilera, EAAP Publ. 76, p 339.

    Google Scholar 

  • Johnson, K. A., M. T. Huyler, H. H. Westberg, B. K. Lamb, and P. Zimmerman. 1994b. Measurement of methane emissions from ruminant livestock using a SF6 tracer technique. Environ. Sci. & Technol. 28: 359.

    Article  Google Scholar 

  • Johnson, K. A., H. H. Westberg, B. K. Lamb, and R. L. Kincaid. 1997. The use of sulfur hexafluoride for measuring methane production by cattle. In: 14th Symp. On Energy Metabolism of Farm Animals. Newcastle, No. Ireland.

    Google Scholar 

  • Joyner, A. E., L. J. Brown, T. J. Fogg, and R. T. Rossi. 1979. Effect of monensin on growth, feed efficiency, and energy metabolism of lambs. J. Anim. Sci., 48: 1, 065.

    Google Scholar 

  • Kelly, J. M., B. Kerrigan, L. P. Milligan, and B. W. McBride. 1994. Development of a mobile open-circuit indirect calorimetry system. Can. J. Anim. Sci. 74: 65.

    Article  Google Scholar 

  • Khalil, M. A. K., and R. A. Rasmussen. 1983. Sources, sinks, and seasonal cycles of atmospheric methane. J. Geophys. Res., 88:5, 131–5, 144.

    Google Scholar 

  • Khalil, M. A. K., R. A. Rasmussen, M.-X. Wang, and L. Ren. 1990. Emissions of trace gases from Chinese rice fields and biogas generators. Chemosphere, 20: 207.

    Article  Google Scholar 

  • Kinsman, R. G., F. D. Sauer, H. A. Jackson, and M. S. Wolynetz. 1997. Methane and carbon dioxide emissions from lactating dairy cows in full lactation monitored over a six-month period. J. Dairy Sci. 78: 2760.

    Article  Google Scholar 

  • Kirchgessner, M., W. Windich, and H. L. Mueller. 1995. Nutritional factors for the quantification of methane production In. Ruminant Physiology: Digestion Metabolism, Growth and Reproduction, Engelhardt, W. V., et al. (ed) p 333.

    Google Scholar 

  • Kleiber, M. 1958a. Some special features of the California appartus for respiration trials with large animals. In: In: G. Torbeck and H. Aersoe (Ed.) 1. A Symposium on energy metabolism: principles, methods and general aspects. Statens Husdyrbrugsudvalg, Copenhagen, Denmark. 53.

    Google Scholar 

  • Kleiber, M. 1958b. A respiration apparatus for tracer trials with radiocarbon on cows, sows and sheep. In: G. Thorbeck and H. Aersoe (Ed.) 1. A Symposium on energy metabolism: principles, methods and general aspects. Statens Husdyrbrugsudvalg, Copenhagen, Denmark. 53.

    Google Scholar 

  • Krumholtz, L. R., C. W. Forsberg, and D. M. Veira. 1983. Association of methanogenic bacteria with rumen protozoa. Can. J. Microbiol, 29: 676.

    Article  Google Scholar 

  • Li, Z. X. Gao, H. Li, and X. Zhang. 1996. Studies on the metabolic rule of methane energy of Sika deer. Acta Theriol. Sinica, 16: 100.

    Google Scholar 

  • Liang, J. B., F. Terada, and I. Hamaguchi. 1989. Efficacy of using the face mask technique for the estimation of daily heat production of cattle. In: Y. Van Der Honing and W. H. Close (Ed.). Energy Metabolism of Farm Animals. Pudoc, Waginingen, The Netherlands.

    Google Scholar 

  • Lodman, D. W., M. E. Branine, B. R. Carmean, P. Zimmerman, G. M. Ward, and D. E. Johnson. 1993. Estimates of methane emissions from manure of U.S. cattle. Chemosphere, 26 (1–4): 189–200.

    Google Scholar 

  • Marik, T., and I. Levin. 1996. A new tracer experiment to estimate methane emissions from a dairy cow shed using sulfur hexafluoride (SF6). Global Biogeochemical Cycles. 10: 413.

    Article  Google Scholar 

  • Martinez, A., G. Bogdanof, D. Johnson, and J. Rust. 1996. Reducing methane emissions from ruminant livestock: Ukraine pre-feasibility study. Winrock International, Morrelton, AR

    Google Scholar 

  • McBee, R. H. 1977. Hindgut fermentation. In: Microbial Ecology of the Gut (R.T.J. Clark and T. Bauchop, eds. ), Academic Press.

    Google Scholar 

  • McLean, J. A. and G. Tobin. 1987. Animal and Human Calorimetry. Cambridge University Press, New York.

    Google Scholar 

  • Milchunas, D. G., M. I. Dyer, O. C. Wallmo and D.E. Johnson. 1978. In vivo/in vitro relationships of Colorado. Mule deer forages. Spec. Report #43, Colo. Div. of Wildlife.

    Google Scholar 

  • Miller, W. H., and R. M. Koos. 1988. Construction and operation of an open-circuit indirect calorimetry system for small ruminants. J. Anim. Sci. 66: 1042.

    Google Scholar 

  • Moe, P. W., and H. F. Tyrrell. 1977. Effects of feed intake and physical form on energy value of corn in timothy hay diets for lactating cows. J. Dairy Sci., 60: 752.

    Article  Google Scholar 

  • Moe, P. W., and H. F. Tyrrell. 1980. Methane production in dairy cows. 8th Energy Symp., EAAP, 26: 12.

    Google Scholar 

  • Morris, G. R. 1976. Anaerobic fermentation of animal wastes: A kinetic and empirical design fermentation. M.S. Thesis, Cornell University.

    Google Scholar 

  • Moss, A. R., D. I. Givens, and P. C. Garnsworth. 1994. The effect of alkali treatment of cereals straws on digestibility and methane production of sheep. Animal Feed Sci. Tech. 49: 245.

    Article  Google Scholar 

  • Murray, R. M., A. M. Bryant, and R.A. Leng. 1975. Measurement of methane production in sheep. In: Tracer Studies on Non-Protein Nitrogen for Ruminants II. IAEA, Vienna, Austria.

    Google Scholar 

  • Murray, R.M., A.M. Bryant, and R.A. Leng. 1976. Rates of production of methane in the rumen and large intestine of sheep. Brit. J. Nutr. 36: 1.

    Article  Google Scholar 

  • Murray, R. M., A. M. Bryant, and R. A. Leng. 1978. Methane production in the rumen and lower gut of sheep given lucerne chaff: Effect of level of intake. Brit.J. Nutr. 39: 337–345.

    Article  Google Scholar 

  • Newbold, C.J., R.J. Wallace, and N.D. Walker. 1993. The effect of tetronasin and monensin on fermemtation, microbial numbers and the development of ionophore resistant bacteria in the rumen. J. Appl. Bacteriol. 75:129.

    Google Scholar 

  • Robb, J., P. J. Evans, and C. Fisher. 1979. A study of the nutritional energetics of sodium hydroxide-heated straw pellets in rations fed to growing lambs. 8th Energy Symp., EAAP, 26: 13.

    Google Scholar 

  • Robbins, C. T. 1973. The biological basis for the determination of carrying capacity. Ph.D. Thesis, Cornell Univ., Ithaca, NY.

    Google Scholar 

  • Rumpler, W. V., D. E. Johnson, and D. B. Bates. 1986. The effect of a dietary cation concentration on methanogenesis by steers fed diets with and without ionophores. J. Anim. Sci. 62: 1, 737.

    Google Scholar 

  • Safley, L. M. 1989. Methane productions from animal wastes management systems. Methane Emissions from Ruminants, ICF/USEPA Workshop, Palm Springs, CA.

    Google Scholar 

  • Safley, L. M, and P. W. Westerman. 1987. Biogas production from anaerobic lagoons. Biological Wastes 23: 181.

    Article  Google Scholar 

  • Safley, L. M., Jr, M. E. Casada, J. W. Woodbury, and K. F. Roos. 1992. Global Methane Emissions from Livestock and Poultry Manure. U.S. EPA/400/1–91/048.

    Google Scholar 

  • Sawyer, M. S., W. H. Hoover, and C. J. Sniffen. 1974. Effects of a ruminai methane inhibitor on growth and energy metabolism in the ovine. J. Anim. Sci. 38: 908.

    Google Scholar 

  • Sheppard, J. C., H. Westberg, J. F. Hopper, K. Genesan, and P. Zimmerman. 1982. Inventory of global methane sources and their production rates. J. Geophys. Res. 87: 1, 982.

    Google Scholar 

  • Stevens, C. E. 1988. Comparative physiology of the vertebrate digestive system. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Sundstol, F. 1982. Energy utilization in sheep fed untreated straw, ammonia treated straw or sodium hydroxide heated straw. 9th Energy Symp., EAAP, 29: 120.

    Google Scholar 

  • Sundstol, F., and A. Ekern. 1976. The nutritive value of frozen, dried, and ensiled grass cut at three different stages of growth. 7th Energy Symposium, EAAP, 19: 241.

    Google Scholar 

  • Sundstol, F., A. Ekern, P. Lingvall, E. Lindgren, and J. Bertilsson. 1979. Energy utilization in sheep fed grass silage and hay. 8th Energy Symp., EAAP, 26: 17.

    Google Scholar 

  • Swift, R. W., J. W. Bratzler, W. H. James, A. D. Tillman, and D. C. Meek. 1948. The effect of dietary fat on utilization of the energy and protein of rations by sheep. J. Anim. Sci., 7: 475.

    Google Scholar 

  • Theurer, C. B. 1987. Grain processing effects on starch utilization by ruminants. J. Anim. Sci. 63: 1, 649.

    Google Scholar 

  • Thornton, J. H., and F. N. Owens. 1981. Monensin supplementation and in vivo methane production by steers. J. Anim. Sci., 52: 628.

    Google Scholar 

  • Tyrrell, H. F., and G. A. Varga. 1985. Energy value for lactation of rations containing ground whole ear maize or maize meal both conserved dry or ensiled at high moisture. 10th Energy Symp., EAAP, 32: 306.

    Google Scholar 

  • Trei, J. E., R. C. Parrish, Y. K. Singh, and G. C. Scott. 1971. Effect of methane inhibitors on rumen metabolism and feedlot performance of sheep. J. Dairy Sci., 54: 536.

    Article  Google Scholar 

  • Van Kessel, J. A. S., and J. B. Russell. 1996. The effect of pH on ruminai methanogenesis. FEMS Micro. Ecol. 20: 205.

    Article  Google Scholar 

  • Van Soest, P. J. 1982. Nutritional Ecology ofthe Ruminant, O. and B. Books, Corvallis, OR. Van Nevel, C. J., and D. I. Demeyer. 1977. Effect of monensin on rumen metabolism in vitro. Appl. Environ. Microbiol., 34: 251.

    Google Scholar 

  • Van der Honing, Y., B. J. Wieman, A. Steg, and B. van Donselaar. 1981. The effect of fat supplementation of concentrates on digestion and utilization of energy by productive dairy cows. Neth. J. Agric. Sci., 29: 79.

    Google Scholar 

  • Varga, G. A., H. F. Tyrrell, D. R. Waldo, G. B. Huntington, and B. P. Glenn. 1985. Effect of alfalfa orrchardgrass silages on energy and nitrogen utilization for growth by Holstein steers. 10th Energy Symp., EAAP, 32: 86.

    Google Scholar 

  • Vermorel, M. 1995. Yearly methane emissions of digestible origin by cattle in France, variations with level and type of production, INRA Prod. Anim., 8: 265.

    Google Scholar 

  • Wedegaertner, T. C., and D. E. Johnson. 1983. Monensin effects on digestibility, methanogenesis and heat increment of a cracked corn-silage diet fed to steers. J. Anim. Sci. 57: 168.

    Google Scholar 

  • Westberg, H. K., A. Johnson, and B. Lamb. 1995. Ruminant methane emissions from livestock. Report to WESGEC, Davis CA.

    Google Scholar 

  • Whitelaw, F. G., J. M. Eadie, L. A. Bruce, and W. J. Shand. 1984. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid production. Brit. J. Nutr., 52: 261.

    Article  Google Scholar 

  • Wieser, M. F., and C. Wenk. 1970. Effect of plane of nutrition and physical form of ration on energy utilization and rumen fermentation in sheep. 5th Energy Symp., EAAP, 17: 53.

    Google Scholar 

  • Williams, D. J. 1993. Methane emissions from the manure of free-range cows. Chemosphere, 26 (1–4): 179–188.

    Article  Google Scholar 

  • Wolin, M. J., and T. L. Miller. 1988. Microbes interactions in the rumen microbial ecosystems. In: P. N Hobson, ed., The Rumen Microbial Ecosystem, Elsevier Applied Science, New York.

    Google Scholar 

  • Yen, J. T., and J. Nienaber. 1991. Absorption of volatile fatty acids from the gastrointestinal tract of swine. J. Anim. Sci., 69: 2, 001.

    Google Scholar 

  • Young, B. A., B. Kerrigan, and R. J. Christopherson. 1975. A versatile respiratory pattern analyzer for studies of energy metabolism of livestock. Can. J. Anim. Sci. 55: 17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnson, D.E., Johnson, K.A., Ward, G.M., Branine, M.E. (2000). Ruminants and Other Animals. In: Khalil, M.A.K. (eds) Atmospheric Methane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04145-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04145-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08451-5

  • Online ISBN: 978-3-662-04145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics