Skip to main content

Sources of Methane: An Overview

  • Chapter
Atmospheric Methane

Abstract

The sources of methane are the most complex and critical element in understanding the concentrations of atmospheric methane and their trends. For those who want to reduce methane in the atmosphere or prevent it from increasing, controlling the sources is perhaps the only practical approach. Accordingly, a significant portion of this book is devoted to estimating the global and regional emission rates. The purpose of this chapter is to introduce the subsequent chapters on individual sources and to lay the foundation for the common elements of determining global emission rates from the many and varied sources of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aselmann, I., and P.J. Crutzen. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem.,8:307-358.

    Google Scholar 

  • Bartlett, K., and R.C. Harriss. 1993. Review and assessment of methane emissions from wetlands. Chemosphere, 26: 261 - 320.

    Article  Google Scholar 

  • Bates, T.S., K.C. Kelly, J.E. Johnson, and R.H. Gammon. 1996. A reevaluation of the open ocean source of methane to the atmosphere. J. Geophys. Res. 101 (D3): 6953 - 6961.

    Article  Google Scholar 

  • Blunier, T., J.A. Chappellaz, J. Schwander, J.-M. Barnola, T. Desperts, B. Stauffer, and D. Raynaud. 1993. Geophys. Res. Lett. 20 (20): 2219 - 2222.

    Article  Google Scholar 

  • Butler, J.H., J.W. Elkins, T.M. Thompson, B.D. Hall, T.H. Swanson, and V. Koropolov. 1991. Oceanic consumption of CH,CCI3: implications for tropospheric OH. J. Geophys. Res., 96:22, 347 - 22, 355.

    Google Scholar 

  • Chappellaz, J., J.M. Barnola, D. Raynaud, Y.S. Korotkevich, and C. Lorius. 1990. Nature, 345: 127 - 131.

    Article  Google Scholar 

  • Chappellaz, J.A, I.Y. Fung, and A.M. Thompson. 1993. The atmospheric CH, increase since the Last Glacial Maximum, 1. Source estimates. Tellus,in press.

    Google Scholar 

  • Cofer, W.R. III, J.S. Levine, E.L. Winstead, and B.J. Stocks. 1991. Trace gas and particulate emissions from biomass burning in temperate ecosystems. In: Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications (J.S. Levine, ed.):203-208.

    Google Scholar 

  • Etheridge, D.M., G.I. Pearman, and P.J. Fraser. 1992. Changes in tropospheric methane between 1841 and 1978 from a high accumulation Antarctic ice core. Tellus 44B: 282 - 294.

    Article  Google Scholar 

  • Fan, S.M., S.C. Wofsy, P.S. Bakwin, D.J. Jacob, S.M. Anderson, P.L. Kebarian, J.B. McManus, C.E. Kolb, and D.R. Fitzjarrald. 1992. Micrometeorological measurements of CH, and CO, exchange between the atmosphere and subarctic tundra. J. Geophys. Res. 97(D15): 16,627-16, 643.

    Google Scholar 

  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, and P.J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96 (D7):13, 033 - 13, 065.

    Google Scholar 

  • Harriss, R.C., D.I. Sebacher, and F.P. Day, Jr. 1982. Methane flux in the Great Dismal Swamp. Nature, 297: 673 - 674.

    Article  Google Scholar 

  • Ito, S., E.W.F. Peterson, and W.R. Grant. 1989. Rice in Asia: is it becoming an inferior good? Amer. J. Agr. Econ., 71: 32 - 42.

    Article  Google Scholar 

  • Kammen, D.M., and B.D. Marino. 1993. On the origin and magnitude of pre-industrial anthropogenic CO, and CH, emissions. Chemosphere, 26: 69 - 86.

    Article  Google Scholar 

  • Khalil, M.A.K. 1992. A statistical method for estimating uncertainties in the total global budget of trace gases. J. Environ. Sci. Health, A27 (3): 755 - 770.

    Google Scholar 

  • Khalil, M.A.K., and R.A. Rasmussen. 1983. Sources, sinks, and seasonal cycles of atmospheric methane. J. Geophys. Res., 88:5, 131-5, 144.

    Google Scholar 

  • Khalil, M.A.K., and R.A. Rasmussen. 1984. The atmospheric lifetime of methylchloroform (CH,CCI3). Tellus, 36B:317-312.

    Google Scholar 

  • Khalil, M.A.K., and R.A. Rasmussen. 1985. Causes of increasing atmospheric methane: depletion of hydroxyl radicals and the rise of emissions. Atmos. Environ., 19: 397 - 407.

    Article  Google Scholar 

  • Khalil, M.A.K., and R.A. Rasmussen. 1987. Atmospheric methane: trends over the last 10,000 years. Atmos. Environ., 21:2, 445 - 2, 452.

    Google Scholar 

  • Khalil, M.A.K., and R.A. Rasmussen. 1990a. Atmospheric methane: recent global trends. Environ. Sci. Tech., 24: 549 - 553.

    Article  Google Scholar 

  • Khalil, M.A.K., and R.A. Rasmussen. 1990b. Constraints on the global sources of methane and an analysis of recent budgets. Tellus, 42B: 229 - 236.

    Article  Google Scholar 

  • Khalil, M.A.K., and R.A. Rasmussen. 1993. Decreasing trend of methane: unpredictability of future concentrations. Chemosphere, 26 (1-4): 803 - 814.

    Article  Google Scholar 

  • Khalil, M.A.K., M.J. Shearer, and R.A.Rasmussen. 1996. Atmospheric methane over the last century. World Resource Review 8: 481 - 492.

    Google Scholar 

  • Krol, M., P.J. van Leeuwen, and J. Lelieveld. 1998. Global OH trend inferred from methylchloroform measurements. J. Geophys. Res. 103(D9): 10,697-10, 711.

    Google Scholar 

  • Lacroix, A.V. 1993. Unaccounted-for sources of fossil and isotopically-enriched methane and their contribution to the emissions inventory: a review and synthesis. Chemosphere, 26 (1-4): 507 - 557.

    Article  Google Scholar 

  • Lambert, G., and S. Schmidt. 1993. Reevaluation of the oceanic flux of methane: Uncertainties and long term variations. Chemosphere 26: 579 - 589.

    Article  Google Scholar 

  • Lassey, K.R., D.C. Lowe, C.A.M. Brenninkmeijer, and A.J. Gomez. 1993. Atmospheric methane and its carbon isotopes in the southern hemisphere: their time series and an instructive model. Chemosphere, 26 (1-4): 95 - 109.

    Article  Google Scholar 

  • Lerner, J., E. Matthews, and I. Fung. 1988. Methane emission from animals: a global high-resolution data base. Global Biogeochem. Cycles, 2:139-156.

    Google Scholar 

  • Levin, I., P. Bergamaschi, H. Don, and D. Trapp. 1993. Stable isotopic signature of methane from major sources in Germany. Chemosphere, 26 (1-4):161-178.

    Google Scholar 

  • Levine, J.S., C.P. Rinsland, and G.M. Tennille. 1985. The photochemistry of methane and carbon monoxide in the troposphere in 1950 and 1985. Nature, 318: 254 - 257.

    Article  Google Scholar 

  • Lovelock, J.E. 1977. Methyl chloroform in the troposphere as an indicator of OH radical abundance. Nature, 267: 32 - 33.

    Article  Google Scholar 

  • Lowe, D.C., C.A.M. Brenninkmeijer, G.W. Brailsford, K.R. Lassey, and A.J. Gomez. 1994. Concentration and 3C records of atmospheric methane in New Zealand and Antarctica: Evidence for changes in methane sources. J. Geophys. Res. 99(D8): 16,913-16, 925.

    Google Scholar 

  • Lu, Y., and M.A.K. Khalil. 1991. Tropospheric OH: model calculations of spatial, temporal, and secular variations. Chemosphere, 23 (3): 397 - 444.

    Article  Google Scholar 

  • Marland, G., R.M. Rotty, and N.L. Treat. 1985. CO2 from fossil fuel burning: global distribution of emissions. Tellus, 37B: 243 - 258.

    Google Scholar 

  • Matthews, E., I. Fung, and J. Lerner. 1991. Methane emission from rice cultivation: geographic and seasonal distribution of cultivated areas and emissions. Global Biogeochemical Cycles, 5 (1): 3 - 24.

    Article  Google Scholar 

  • Midgley, P.M. 1989. The production and release to the atmosphere of 1,1,1-trichloroethane (methyl chloroform). Atmos. Environ., 23:2, 663 - 2, 665.

    Google Scholar 

  • Midgley, P.M., and A. McCulloch. 1995. The Production and global distribution of emissions to the atmosphere of 1,1,1-trichloroethane (Methyl chloroform). Atmos. Environ. 29 (14): 1601 - 1608.

    Article  Google Scholar 

  • Mitchell, B.R. 1980. European Historical Statistics, 2nd Rev. Ed. Facts on File, New York, U.S.A.

    Google Scholar 

  • Mitchell, B.R. 1982. International Historical Statistics, Africa and Asia. New York University Press.

    Google Scholar 

  • Mitchell, B.R. 1983. International Historical Statistics, The Americas and Australasia. Gale Research Co., Detroit, Michigan.

    Google Scholar 

  • Moncrieff, J.B., I.J. Beverland, D.H. Ó Néill, and F.D. Cropley. 1998. Controls on trace gas exchange observed by a conditional sampling method. Atmos. Environ. 32: 3265 - 3274.

    Article  Google Scholar 

  • Mroz, E.J. 1993. Deuteromethanes: potential fingerprints of the sources of atmospheric methane. Chemosphere, 26 (1-4): 45 - 53.

    Article  Google Scholar 

  • Pinto, J., and M.A.K. Khalil. 1991. The stability of tropospheric OH during ice ages, interglacial epochs and modern times. Tellus, 43B: 347 - 352.

    Article  Google Scholar 

  • Prinn, R.G., D. Cunnold, R.A. Rasmussen, P. Simmonds, F. Alyea, A. Crawford, P. Fraser, and R. Rosen. 1987. Atmospheric trends in methylchloroform and the global average for the hydroxyl radical. Science, 238: 945 - 950.

    Article  Google Scholar 

  • Rasmussen, R.A., and M.A.K. Khalil. 1981. Interlaboratory comparison of fluorocarbons 11, 12, methylchloroform, and nitrous oxide measurements. Atmos. Environ., 15:1,559-1,568. Seiler, W., A. Holzapfel-Pschorn, R. Conrad, and D. Scharffe. 1984. Methane emission from rice paddies. J. Atmos. Chem., 1: 241 - 268.

    Google Scholar 

  • Simpson, I.J., G.W. Thurtell, G.E. Kidd, M. Lin, T.H. Demetriades-Shah, I.D. Flitcroft, E.T. Kanemasu, D. Nie, K.F. Bronson, and H.U. Neue. 1995. Tunable diode laser measurements of methane fluxes from an irrigated rice paddy field in the Philippines. J. Geophys. Res. 100 (D4): 7283 - 7290.

    Article  Google Scholar 

  • Singh, H.B. 1977. Preliminary estimation of average tropospheric HO concentrations in the northern and southern hemispheres. Geophys. Res. Let., 4: 453 - 456.

    Article  Google Scholar 

  • Steele, L.P., E.J. Dlugokencky, P.M. Lang, P.P. Tans, R.C. Martin, and K.A. Masarie. 1992. Slowing down of the global accumulation of atmospheric methane during the 1980s. Nature, 358: 313 - 316.

    Article  Google Scholar 

  • Stocks, B.J. 1991. The extent and impact of forest fires in northern circumpolar countries. In: Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, J.S. Levine, ed.:197-202.

    Google Scholar 

  • Taylor, J.A., and P.R. Zimmerman. 1991. Modeling trace gas emissions from biomass burning. In: Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications ( J.S. Levine, ed. ), 345 - 350.

    Google Scholar 

  • Thompson, A.M., and R.J. Cicerone. 1986. Possible perturbations to atmospheric CO, CH„ and OH. J. Geophys. Res., 91:10, 853-10, 864.

    Google Scholar 

  • United Nations. 1977, 1978, 1980, 1982, 1984, 1986, 1989, 1990, 1991, 1992, 1994, 1996. FAO Production Yearbook, vols. 30, 31, 33, 35, 37, 39, 42, 43, 44, 45, 47, 49. Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Vaghjiani, G.L., and A.R. Ravishankara. 1991. New measurement of the rate coefficient for the reaction of OH with methane. Nature, 350: 406 - 408.

    Article  Google Scholar 

  • Wahlen, M., N. Tanaka, R. Henry, B. Deck, J. Zeglen, J.S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, and W. Broecker. 1989. Carbon-14 in methane sources and in atmospheric methane: the contribution from fossil carbon. Science, 245: 286 - 245.

    Article  Google Scholar 

  • Whalen, S.C., and W.S. Reeburgh. 1992. Interannual variations in tundra methane emission: a 4-year time series at fixed sites. Global Biogeochem. Cycles, 6:139-159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khalil, M.A.K., Shearer, M.J. (2000). Sources of Methane: An Overview. In: Khalil, M.A.K. (eds) Atmospheric Methane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04145-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04145-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08451-5

  • Online ISBN: 978-3-662-04145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics