Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 37))

Abstract

Amorphous silicon technology can be favorably employed to achieve a new generation of integrated color sensitive detectors. The high absorption coefficient, together with the ease of fabricating multi-layered structures, offer many opportunities for new devices. The structures take further advantage of two particular properties of a-Si:H, that it can be deposited on large area by glow discharge and at relatively low temperature. This chapter describes the amorphous silicon color detectors, along with their device structure and addressing architecture. A brief introduction to related photo-detectors for infrared and ultraviolet detection is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Street, X. D. Wu, R. Weisfield, P. Nylen, “Color document imaging with amorphous silicon sensor array”, Mater. Res. Soc. Symp. Proc. 336, 873 (1994).

    Article  Google Scholar 

  2. L. E. Antonuk, Y. El-Mohri, W. Huang, J. Siewerdsen, J. Yorkston, “A large area, high resolution a-Si:H array for X-ray imaging”, Mat. Res. Soc. Symp. Proc. 336, 855 (1994).

    Article  Google Scholar 

  3. M. Bohm, F. Blecher, A. Eckhardt, C. Seibel, C. Schneider, J. Sterzel, S. Benthien, H. Keller, T. Lule, P. Rieve, M. Sommer, C. Van Uffel, F. Librecht, R. C. Lind, L. Humm, U. Efron, E. Roth, “Image sensor in TFA technology — status and future trendes”, MRS Symp. Proc. 507, 327 (1998).

    Article  Google Scholar 

  4. J. Wyatt, J. Rizzo, “Ocular implant for the blind”, IEEE Spectrum, May (1996), p. 47;

    Google Scholar 

  5. M. B. Schubert, A. Hierzenberger, V. Baumung, H. N. Wanka, W. Nisch, M. Stelzle, E. Zrenner, “Amorphous Silicon Photodiodes for replacing degenerated photoperceptron in the uman eye”, Mat. Res. Soc. Symp. Proc. 467, 913 (1997).

    Article  Google Scholar 

  6. “Digital Television”, Edited by C. C. Sanbdbank, John Wiley & Sons (1990)

    Google Scholar 

  7. A. G. Gaydon, “The spectroscopy of Flames”, Chapman and Hall LTD., London (1957).

    Google Scholar 

  8. D. Caputo, F. Irrera, F. Palma, S. R. Rachele, M. Tucci, “Amorphous silicon optical spectrum analyzer for the visible spectrum”, 198200, 1172 (1996).

    Google Scholar 

  9. I. Shimizu, “Enhancement of long wavelenght sensitivity”, Amorphous Semiconductor Technologies & Devices, JARECT 16, 300 (1984).

    Google Scholar 

  10. D. S. Shenj, P. Conde, V. Chu, S. Aljishi, S. Wagner, “Effect of material properties on the performance of a-Si, Ge:H, F photodetectors”, Mat. Res. Soc. Symp. Proc. 118, 457 (1988).

    Article  Google Scholar 

  11. L. Ley, “Photoemission and optical properties”, in “The physics of hydro-genated amorphous silicon”, eds. J. D. Joannopoulos, G. Lucovsky, Topics in Applied Physics 56, 61 (1884).

    Chapter  Google Scholar 

  12. J. Ristein, G. Weiser, “Influence of doping on the optical properties in plasma deposited amorphous silicon”, Solar Energy Mat. 12, 221 (1985).

    Article  Google Scholar 

  13. G. D. Cody, B. Abeles, C. Wronski, C. R. Stephens, C. Brooks, “Optical characterization of silicon-hydride films”, Solar Cells 2, 227 (1980).

    Article  Google Scholar 

  14. J. Tauc, Amorphous and liquid semiconductors, Plenum Press, New York (1974).

    Book  Google Scholar 

  15. H. Fritsche, “Characterization of glow-discharge deposited a-Si:H (Review)”, Solar Energy Mat. 3, 447 (1980).

    Article  Google Scholar 

  16. B. Von Roedern, L. Ley, M. Cardona, “Photoelectron spectra of hydrogenated amorphous silicon”, Phys. Rev. Lett. 39, 1576 (1977).

    Article  Google Scholar 

  17. S. C. Zhang, W. C. Jackson, D. J. Chadi, “ Diatomic-Hydrogen-Complex dissociation: a microscopic model for metastable defect generation in Si”, Phys. Rev. Letters 65, 2575 (1990).

    Article  Google Scholar 

  18. X. Xu, S. Wagner, “Physics and electronic properties of amorphous and micro-crystalline silicon alloys”, in Amorphous and Macrocrystalline Semiconductors Devices, eds. J. Kanicki, Artech House (1992) p. 89.

    Google Scholar 

  19. A. Desalvo, F. Giorgis, C. F. Pirri, E. Tresso, P. Rava, R. Galloni, R. Rizzoli, C. Summonte, “Optoelectronic properties, defect structure and composition of a-Si:H films grown in undiluted and H2 diluted silane-metane”, Journal Appl. Phys. 81 (12), 7973 (1997).

    Article  Google Scholar 

  20. S. Wagner, V. Chu, J. P. Conde, J. Z. Liu, “The optoelectronic properties of a-Si, Ge:H(F) alloys”, J. Non-Cryst. Solids, 114166, 453 (1998).

    Google Scholar 

  21. S. Aljishi, Z.E. Smith, S. Wagner, “Optoelectronic properties and the gap state distribution in a-Si, Ge alloys”, Amorphous silicon and related material, edr. H. Fritzsche, World Scientific, Singapore, (1989) p. 887.

    Google Scholar 

  22. L. P. Landau, E. M. Lifshitz, Electronics of continuous media, Cambridge Univ. press, Cambridge.

    Google Scholar 

  23. S. Adachi, “Calculation model for the optical constant of amorphous semiconductors”, J. Appl. Phys. 70, 2304 (1991).

    Article  Google Scholar 

  24. H. K. Tsai, S. C. Lee and W. L. Lin “An amorphous SiC/Si two-color detector”, IEEE-Electron Device Lett. EDL-8, 365–67 (1987).

    Article  Google Scholar 

  25. H. Stiebig and M. Bohm, “Optimization criteria for a-Si:H nipin color sensors”, J. Non-Cryst. Solids 164166, 785 (1993).

    Google Scholar 

  26. G. de Cesare, F. Irrera, F. Lemmi, F. Palma, “Tunable photo-detectors based on amorphous Si/SiC heterostructures”, IEEE Transaction on Electron Devices 42 (5), 835 (1995).

    Article  Google Scholar 

  27. G. de Cesare, F. Galluzzi, F. Irrera, D. Lauta, F. Ferrazza, M. Tucci, “ Variable spectral response photodetector based on crystalline/amorphous silicon heterostructure”, J. of Non-crystalline Solids 198200, 1189–1192 (1996).

    Google Scholar 

  28. G. de Cesare, F. Irrera, F. Lemmi, F. Palma, “a-Si:H/a-SiC:H heterostructure for bias-controlled photodetectors”, Mat. Res. Soc. Symp. Proc. 336, 885 (1994).

    Article  Google Scholar 

  29. R. S. Crandall, J. Appl. Phys. 53 (4), 3350 (1982).

    Article  Google Scholar 

  30. H.K. Tsai and S.C. Lee “Amorphous SiC/Si three-color detector”, Appl. Phys. Lett. 52 (4), 275 (1988).

    Article  Google Scholar 

  31. H. Stiebig, J. Gield, D. Knipp, P. Rieve, M. Bohm, “Amorphous silicon three color detector”, MRS Symp. Proc. 337, 815 (1995).

    Article  Google Scholar 

  32. P. Rieve, J. Giehl, Q. Zhu, M. Bohm, “a-Si:H photo diode with variable spectral sensitivity”, Mat. Res. Soc. Symp. Proc. 420, 135 (1996).

    Article  Google Scholar 

  33. F. Irrera, F. Lemmi, F. Palma, “Transient behaviour of Adjustable Threshold a-Si:H/a-SiC:H Three-Color Detector”, IEEE Transaction on Electron Devices 44 (9), 1410 (1997).

    Article  Google Scholar 

  34. H. Stiebig, D. Knipp, P. Hapke, F. Finger, “Three color piiin-detector using microcrystalline silicon”, J. Non-cryst. Solids 227230, 1330 (1998).

    Google Scholar 

  35. T. Neidlinger, R. Bruggemann, H. Brummach, M. B. Schubert, “Color separation in a-Si:H based p-i-i-n sensor: temperature and intensity dependance”, J. Non-cryst. Solids 227230, 1335 (1998).

    Google Scholar 

  36. M. C. Rossi, R. Vincenzoni, F. Galluzzi, “n+-SnO2/a-SiC:H/Metal thin film photodetectors with voltage controlled spectral sensitivity”, IEEE Transaction on Electron Devices 42, 153 (1996).

    Google Scholar 

  37. H. Stiebig, D. Knipp, J. Folsch, F. Finger and H. Wagner, “Optimized three-color detector based on a-SiGe:H heterojunctions”, Mat. Res. Soc. Symp. Proc. 420, 153 (1996).

    Article  Google Scholar 

  38. G. de Cesare, F. Irrera, F. Lemmi, F. Palma, “Amorphous silicon/silicon carbide three color photodetector with adjustable threshold”, Appl. Phys. Lett. 66 (10), 1178 (1996).

    Article  Google Scholar 

  39. G. de Cesare, F. Irrera, F. Lemmi, F. Palma, “Adjustable threshold a-Si:H color detectors”, MRS Symp. Proc. 337, 785 (1995). Italian Patent No. RM94A000294; US Patent Sep. 17, 1996, Patent Number 5,557,1333.

    Article  Google Scholar 

  40. G. Masini, G. de Cesare and F. Palma, “Current induced degradation in boron-doped hydrogenated amorphous silicon: a novel investigation technique”, J. Appl. Phys. 77 (3), 1133 (1995).

    Article  Google Scholar 

  41. M. Topic, F. Smole, J Furlan, W. Kusian, “Stacked a-SiC:H/a- Si:H het-erostructure for bias controlled three-colour detector”, Journal of Non-Crystalline Solids 198200, 1180 (1996).

    Google Scholar 

  42. R. L. Weisfield, “High performance input scanning array using amorphous silicon photodiodes and thin film transistors”, Mat. Res. Soc. Symp. Proc. 258, 1105 (1992).

    Article  Google Scholar 

  43. F. Irrera, F. Lemmi, F. Palma, “Driving of a-Si:H/a-SiC:H adjustable threshold three color detectors for video rate applications”, J. Non-cryst. Solids 227230, 1340 (1998).

    Google Scholar 

  44. J. L. Wiza, “Micro Channel plated detector”, Nucl. Instr. Met. 162, 587–601 (1979).

    Article  Google Scholar 

  45. J. Janesick, T. Elliot, G. Fraschetti, S. Collins, M. M. Blouke, B. Corrie, “Charge-coupled device pinning technologies”, Proc. SPIE 1071, 153–169 (1989).

    Article  Google Scholar 

  46. R. A. Stern, R. C. Catura, R. Kimble, M. Wienzenread, M.M. Blouke, R. Hiyes, D. M. Walton, J. L. Culhane, “Ultraviolet and extreme ultraviolet response of CCD detectors”, Opt. Eng. 26 (10), 972–980 (1987).

    Google Scholar 

  47. G. de Cesare, F. Irrera, F. Palma, M. Tucci, E. Jannitti, P. Naletto, and P. Nicolosi, “Amorphous silicon-silicon carbide photodiodes with excellent sensitivity and selectivity in the vacuum ultraviolet spectrum”, Appl. Phys. Lett. 67 (3), 335 (1995). Italian patent No. RM95A000073. Italian patent No. RM95A000073; E.C. patent 96830052.5–2203.

    Article  Google Scholar 

  48. D. Caputo, G. de Cesare, F. Irrera, F. Palma, “Solar blind UV photodetector for large area application”, IEEE Trans. on Electron Devices, 43, 1351 (1996).

    Article  Google Scholar 

  49. H. Weinert, M. Petrauskas, J. Kolenda, A. Galecka, F. Wang, and R. Schwarz, “Ambipolar diffusion coefficient in a-SiC:H alloys in steady state and transient grating measurements” Mat. Res. Soc. Symp. Proc. 297, 497 (1993).

    Article  Google Scholar 

  50. G. Cocorullo, F. G. Delia Corte, R. De Rosa, I. Rendina, A. Rubino, E. Terzini, “a-Si:H/a-SiC:H waveguides and modulators for low-cost silicon integrated optoelectronics”, J. Non-Cryst. Solids 227230, 1118 (1998).

    Google Scholar 

  51. S. Guha, J. Yang, A. Banerjee, T. Glatfelter, K. Hoffman, S. R. Ovshinsky, M. Izu, H. C. Ovshinsky, X. Deng, Mat. Res. Soc. Symp. Proc. 336, 645 (1994).

    Article  Google Scholar 

  52. P.P. Deimel, B. Heimhofer, G. Krötz, H.J. Lilenhof, J. Wind, G. Müller, E. Voegs, IEEE Photon. Technol. Lett. 2, 499 (1990).

    Article  Google Scholar 

  53. Y.K. Fang, S.B. Hwang, K.H. Chen, C.R. Liu, L.C. Kuo, IEEE Trans. Electron Devices 39, 1350 (1992).

    Article  Google Scholar 

  54. J. Wind, G. Müller, Appl. Phys. Lett. 59, 956 (1991).

    Article  Google Scholar 

  55. Masamichi Okamura, Satoru Suzuki, IEEE Photon. Technol. Lett. 6, 412 (1994).

    Article  Google Scholar 

  56. D. Caputo, G. de Cesare, A. Nascetti, F. Palma, M. Petri, “Infrared photode-tection at room temperature using photocapacitance in amorphous silicon structures” Appl. Phys. Lett. 72, 1229 (1998).

    Article  Google Scholar 

  57. Italian patent n. RM97A03341 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palma, F. (2000). Multilayer Color Detectors. In: Street, R.A. (eds) Technology and Applications of Amorphous Silicon. Springer Series in Materials Science, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04141-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04141-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08499-7

  • Online ISBN: 978-3-662-04141-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics