Skip to main content

Nitrogen in the Environment

  • Chapter
Plant Nitrogen

Abstract

When leafy vegetables such as spinach and lettuce are grown in greenhouses during winter and early spring, i.e. at low light intensity and short day length, they may accumulate a high amount of nitrate in the leaves (Corré and Breimer 1979). A high nitrate content in vegetables is undesirable, because it may be harmful for the consumer. Nitrate itself is not toxic, but it is easily reduced to the toxic compound nitrite. Reduction to nitrite can occur during postharvest storage of vegetables (Aworth et al. 1980), as well as after ingestion as food in saliva and in the gastrointestinal tract (Maynard et al. 1976; Walters and Walker 1979). Acute nitrite toxicity causes a respiratory dysfunction called methaemoglobinaemia. By the oxidation of the ferrous iron of haemoglobin to the ferric form, methaemoglobin is formed which cannot transport oxygen, thereby causing tissue asphyxia. Chronic nitrite poisoning may result in the formation of carcinogenic nitrosamines. These N-nitroso compounds can be formed from nitrite and secondary amine compounds, which often occur in food (Walters and Walker 1979; Vermeer et al. 1998). As yet, the occurrence of (gastric) cancer has not been directly related to the consumption of nitrate, but it is generally accepted that a high nitrate intake should be prevented (Forman et al. 1985; Westgeest 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Addiscott TM, Powlson DS (1992) Partitioning losses of nitrogen fertilizer between leaching and denitrification. J Agric Sci Cambridge 118: 101–107

    Article  CAS  Google Scholar 

  • Anonymous (1992) Nitrogen cycling and leaching in cool and wet regions of Europe. In: François E, Pithan K, Bartiaux-Thill N (eds) for the Management Committee of the COST 814 project. October 22–23, Gembloux, Belgium

    Google Scholar 

  • Aworth OC, Hicks JR, Minotti PL, Lee CY (1980) Effects of plant age and nitrogen fertilization on nitrate accumulation and postharvest nitrite accumulation in fresh spinach. J Am Soc Hortic Sci 105: 18–20

    Google Scholar 

  • Barneix A, Causin HF (1996) The central role of amino acids on nitrogen utilization and plant growth. J Plant Physiol 149: 358–362

    Article  CAS  Google Scholar 

  • Beaudoin N, Makowski D, Mary B, Wallach D, Parnaudeau V, Parisseaux B, Machet JM, Meynard JM (1998) Evaluation de l’impact économique et environnemental de la mesure agri-environnementale MAE au moyen de modèles agronomiques. Rapport Ministère de l’Agriculture, INRA, Laon, 79 pp

    Google Scholar 

  • Beaudoin N, Mary B, Parnaudeau V (1999) Impact of agricultural scenarios on nitrate pollution at the catchment scale. Communication 10th Nitrogen Workshop, Copenhagen (DK) 1999/08/23–26

    Google Scholar 

  • Bielek P, Kudeyarov VN, Bashkin VN (1985) Nitrogen balance in the present stage of anthropogenesis. In: Bielek P, Kudeyarov VN (eds) Nitrogen cycles in the present agriculture. Priroda, Bratislava pp 11–38

    Google Scholar 

  • Blom-Zandstra M, Lampe JEM (1985) The role of nitrate in the osmoregulation of lettuce (Lactuca sativa L.) grown at different light intensities. J Exp Bot 36: 1043–1052

    Article  CAS  Google Scholar 

  • Blom-Zandstra M, Eenink AH (1986) Nitrate concentration and reduction in different genotypes of lettuce. J Am Soc Hortic Sci 111: 908–911

    CAS  Google Scholar 

  • Blom-Zandstra M, Lampe JEM, Ammerlaan FHM (1988) C and N utilization of two lettuce genotypes during growth under non-varying light conditions and after changing the light intensity. Physiol Plant 74: 147–153

    Google Scholar 

  • Bouwman (1996) Direct emissions of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst 46: 53–70

    Google Scholar 

  • Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B, Gate P, Devienne F, Antonioletti R, Dürr C, Richard G, Beaudoin N, Recous S, Tayot X, Plénet D, Cellier P, Machet JM, Meynard JM, Delécolle R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balance. I. Theory and parameterization applied to wheat and corn. Agronomie 18: 311–346

    Google Scholar 

  • Bumb BL (1995) World nitrogen supply and demand: an overview. In: Bacon PE (ed) Nitrogen fertilization in the environment. Marcel Dekker, New York, pp 1–40

    Google Scholar 

  • Chaney K (1990) Effect of nitrogen fertilizer rate on soil nitrogen content after harvesting winter wheat. J Agric Sci Cambridge 114: 171–176

    Article  Google Scholar 

  • Clarkson DT (1986) Regulation of the absorption and release of nitrate by plant cells: a review of current ideas and methodology. In: Lambers H, Neeteson J, Stulen I (eds) Physiological, ecological and applied aspects of nitrogen metabolism in higher plants. M Nijhoff, Dordrecht, pp 3–28

    Google Scholar 

  • Clement CR, Hopper MJ, Jones LHP (1978) The uptake of nitrate by Lolium perenne from flowing nutrient solution. I. Effect of concentration. J Exp Bot 29: 453–464

    Google Scholar 

  • Corré WJ, Breimer T (1979) Nitrate and nitrite in vegetables. Pudoc, Wageningen

    Google Scholar 

  • Davies DB, Sylvester-Bradley R (1995) The contribution of fertilizer nitrogen to leachable nitrogen in the UK: a review. J Sci Food Agric 68: 399–406

    Article  CAS  Google Scholar 

  • Devienne F, Mary B, Lamaze T (1994) Nitrate transport in intact wheat roots. II. Long-term effects of NO3- concentration in the nutrient solution on NO3- unidirectional fluxes and distribution within the tissues. J Exp Bot 45: 677–684

    Article  CAS  Google Scholar 

  • Dragosits U, Sutton MA, Place CJ, Bayley AA (1998) Modelling the spatial distribution of agricultural ammonia emissions in the UK. Environ Pollut 102: 195–203

    Article  CAS  Google Scholar 

  • Fonseca FG, Den Hertog J, Stulen I (1996) The response of Plantago major ssp. pleiosperma to elevated CO2 is modulated by the formation of secondary shoots. New Phytol 133: 627–635

    Article  Google Scholar 

  • Fonseca FG, Bowsher, CG, Stulen I (1997) Impact of elevated CO2 on nitrate reductase transcription and activity in leaves and roots of Plantago major. Physiol Plant 100: 940–948

    Article  CAS  Google Scholar 

  • Forman D, Al-Dabbagh S, Doll R (1985) Nitrates, nitrites and gastric cancer in Great Britain. Nature 313: 620–625

    Article  PubMed  CAS  Google Scholar 

  • Glass ADM, Siddiqi MY (1995) Nitrogen absorption by plant roots. In: Srivastava HS, Singh RP (eds) Nitrogen nutrition in higher plants. Associated Publishing, New Delhi, pp 21–56

    Google Scholar 

  • Glendining MJ, Poulton PR, Powlson DS (1992) The relationship between inorganic N in soil and the rate of fertilizer N applied on the Broadbalk wheat experiment. Aspects Appl Biol 30: 95–102

    Google Scholar 

  • Granli T, Beckman OC (1994) Nitrous oxide from agriculture. Norw J Agric Sci 12: 1–129

    Google Scholar 

  • Guiot J, Grevy L (1990) Evolution des nitrates dans une terre soumise à la rotation betterave-froment-escourgeon. In: Calvet R (ed) Nitrate, agriculture, eau. INRA, Paris, pp 417–423

    Google Scholar 

  • Hoffmann M, Johnsson H (1999) A method for assessing generalised nitrogen leaching estimates for agricultural land. Environ Mod Assoc 4: 35–44

    Article  Google Scholar 

  • Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiol 105: 3–7

    CAS  Google Scholar 

  • IFEN (1998) Agriculture et Environnement: les indicateurs. Institut Français de l’Environnement, 72 pp

    Google Scholar 

  • Jarvis SC, Pain BF (1990) Ammonia volatilisation from agricultural land. Fertil Soci Proc 298: 1–35

    Google Scholar 

  • Johnston AE, Jenkinson DS (1989) The nitrogen cycle in UK arable agriculture. The Fertiliser society Proc. No 286 3–24

    Google Scholar 

  • Justes E, Jeuffroy MH, Mary B (1997) The nitrogen requirement of major agricultural crops. Wheat, barley and durum wheat. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops vol 4. Springer Berlin Heidelberg New York, 4: 73–92

    Google Scholar 

  • Krapp A, Fraisier V, Scheible-Wolf R, Quesada A, Gojon A, Stitt M, Caboche M, Daniel-Vedele F (1998) Expression studies of Nrt2: 1Np, a putative high affinity nitrate transporter: evidence for its role in nitrate uptake. Plant J 14: 723–731

    CAS  Google Scholar 

  • Laurent F, Mary B (1992) Management of nitrogen in farming systems and the prevention of nitrate leaching. Aspects Appl Biol 30: 45–61

    Google Scholar 

  • Ledgard SF, Giller GE (1995) Atmospheric N2 fixation as an alternative N source. In: Bacon PE (ed) Nitrogen fertilization in the environment. Marcel Dekker, New York, pp 443–486

    Google Scholar 

  • Limaux F, Recous S, Meynard JM, Guckert A (1999) Relationship between rate of crop growth at date of fertiliser-N application and fate of fertiliser-N applied to winter wheat. Plant Soil 214: 49–59

    Article  CAS  Google Scholar 

  • Makowski D, Wallach D, Meynard JM (1999) Models of yield, grain protein and residual mineral nitrogen responses to applied nitrogen for winter wheat. Agron J 91: 377–385

    Article  Google Scholar 

  • Mary B, Beaudoin N, Benoît M (1997) Prévention de la pollution nitrique à l’échelle du bassin d’alimentation en eau. In: Lemaire G, Nicolardot B (eds) Maîtrise de l’azote dans les agrosystèmes. Colloques INRA 83: 289–312

    Google Scholar 

  • Maynard DN, Barker AV, Minotti PL, Peck NH (1976) Nitrate accumulation in vegetables. In: Brady NC (ed) Advances in agronomy. Academic Press, New York, pp 71–118

    Google Scholar 

  • McDonald AJ, Powlson DS, Poulton PR, Jenkinson DS (1989) Unused fertilizer nitrogen in arable soils — its contribution to nitrate leaching. J Sci Food Agric 46: 407–419

    Article  Google Scholar 

  • Meynard JM, Justes E, Machet JM, Recous S (1997) Fertilisation azotée des cultures annuelles de plein champ. In: Lemaire G, Nicolardot B (eds) Maîtrise de l’azote dans les agrosystèmes. Colloques INRA 83: 183–200

    Google Scholar 

  • Müller B, Tillard P, Touraine B (1995) Nitrate fluxes in soybean seedling roots and their response to amino acids: an approach using 15N. Plant Cell Environ 18: 1267–1279

    Article  Google Scholar 

  • Nicolardot B, Mary B, Houot S, Recous S (1997) La dynamique de l’azote dans les sols cultivés. In: Lemaire G, Nicolardot B (eds) Maîtrise de l’azote dans les agrosystèmes. Colloques INRA 83: 87–104

    Google Scholar 

  • Normand B, Recous S, Vachaud G, Kengni L, Garino B (1997) 15N tracers combined with tension neutronic method to estiate the nitrogen balance of irrigated maize. Soil Sci Somc Am J 61: 1508–1518

    Google Scholar 

  • Pelsy F, Caboche M (1992) Molecular genetics of nitrate reductase in higher plants. Adv Genet 30: 1–40

    Article  CAS  Google Scholar 

  • Peoples MB, Mosier AR, Freney JR (1995) Minimizing gaseous losses of nitrogen. In: Bacon PE (ed) Nitrogen fertilization in the environment. Marcel Dekker, New York, pp 565–602

    Google Scholar 

  • Pilbeam CJ (1996) Effect of climate on the recovery in crop and soil of 15N-labelled fertilizer applied to wheat. Fertil Res 45: 209–215

    Article  Google Scholar 

  • Pons TL, Van der Werf A, Lambers H (1993) Photosynthetic nitrogen use efficiency of inherently slow-and fast-growing species: possible explanations for observed differences. In: Roy and J, Gamier E (eds) A whole-plant perspective on carbon-nitrogen interactions. SPB Academic Publishing, The Hague, pp 61–78

    Google Scholar 

  • Powlson DS, Hart PBS, Poulton PR, Johnston AE, Jenkinson DS (1992) Influence of soil type, crop management and weather on the recovery of 15N-labelled fertilizer applied to winter wheat in spring. J Agric Sci Cambridge 118: 83–100

    Article  CAS  Google Scholar 

  • Quilleré I, Dufosse C, Roux Y, Foyer CH, Caboche M, Morot-Gaudry JF (1994) The effects of deregulation of NR gene expression on growth and nitrogen metabolism of Nicotiana plumbaginifolia plants. J Exp Bot 45: 1205–1211

    Article  Google Scholar 

  • Recous S, Jeuffroy MH, Mary B, Meynard JM (1996) Gestion de l’azote en zone d’agriculture intensive. Rapport de contrat INRA-SCGP, Laon, 37 pp

    Google Scholar 

  • Recous S, Loiseau P, Machet JM, Mary B (1997) Transformations et devenir de l’azote de l’engrais sous cultures annuelles et sous prairies. In: Lemaire G, Nicolardot B (eds) Maîtrise de l’azote dans les agrosystèmes. Colloques INRA 83: 105–120

    Google Scholar 

  • Reinink K (1988) Improving quality of lettuce by breeding for low nitrate content. Acta Hortic 222: 121–128

    Google Scholar 

  • Reinink K, Groenwold R (1987) The inheritance of nitrate content in lettuce (Lactuca sativa L.). Euphytica 36: 733–744

    Article  CAS  Google Scholar 

  • Richter GM, Beblik AJ, Schmalstieg K, Richter 0 (1998) N-dynamics and nitrate leaching under rotational and continuous set-aside — a case study at the field and catchment scale. Agric Ecosyst Environ 68: 125–138

    CAS  Google Scholar 

  • Rodgers CO, Barneix AJ (1988) Cultivar differences in the rate of nitrate uptake by intact wheat plants as related to growth rate. Physiol Plant 72: 121–126

    Article  Google Scholar 

  • Skiba UM, McTaggart IP, Smith KA, Hargreaves KJ, Fowler D (1996) Estimates of nitrous oxide emissions from soil in the UK. Energ Convers Manage 37: 1303–1308

    Article  CAS  Google Scholar 

  • Smolders E (1993) Kinetic aspects of the soil-to-plant transfer of nitrate. PhD Thesis, University of Leuven, Belgium

    Google Scholar 

  • Steingröver E, Oosterhuis R, Wieringa F (1982) Effect of light treatment and nutrition on nitrate accumulation in spinach ( Spinacia oleracea L. ). Z Pflanzenphysiol 107: 97–102

    Google Scholar 

  • Steingröver E, Ratering P, Siesling J (1986a) Daily changes in uptake, reduction and storage of nitrate in spinach at low light intensity. Physiol Plant 65: 50–556

    Google Scholar 

  • Steingröver E, Siesling J, Ratering P (1986b) Effect of one night with “low light” on uptake, reduction and storage of nitrate in spinach. Physiol Plant 66: 57–562

    Google Scholar 

  • Stulen I (1990) Interactions between carbon and nitrogen metabolism in relation to plant growth and productivity. In: Abrol YP (ed) Nitrogen in higher plants. Research Studies Press, Taunton, pp 297–312.

    Google Scholar 

  • Stulen I, Ter Steege MW (1995) Light and nitrogen assimilation. In: Srivastava HS, Singh RP (eds) Nitrogen nutrition of higher plants. Associated Publishing, New Delhi, pp 371–388

    Google Scholar 

  • Ter Steege MW (1996) Regulation of nitrate uptake in a whole plant perspective. PhD Thesis, University of Groningen, Groningen

    Google Scholar 

  • Ter Steege MW, Stulen I, Wiersema PK, Paans AJM, Vaalburg W, Kuiper PJC, Clarkson DT (1998) Growth requirement for N as a criterion to assess the effects of physical manipulation on nitrate uptake fluxes in spinach. Physiol Plant 103: 181–192

    Google Scholar 

  • Ter Steege MW, Stulen I, Wiersema PK, Posthumus F, Vaalburg W (1999) Efficiency of nitrate uptake in spinach impact of external nitrate concentration and relative growth rate on nitrate influx and efflux. Plant Soil 208: 124–134

    Google Scholar 

  • Touraine B, Clarkson DT, Muller B (1994) Regulation of nitrate uptake at the whole plant level. In: Roy J, Gamier E (eds) A whole-plant perspective on carbon-nitrogen interactions. SPB Academic Publishing, The Hague, pp 11–30

    Google Scholar 

  • Trueman LJ, Onyeocha I, Forde BG (1996) Recent advances in the molecular biology of a family of eukaryotic high affinity nitrate transporters. Plant Physiol Biochem 34: 621–627

    CAS  Google Scholar 

  • Urrestarazu M, Postigo A, Salas M, Sanchez A, Carrasco G (1998) Nitrate accumulation reduction using chloride in the nutrient solution on lettuce growing by NFT in semiarid climate conditions. J Plant Nutr 21: 1705–1714

    Article  CAS  Google Scholar 

  • Van der Boon J, Pieters JH, Slangen JHG, Titulaer HHH (1986) The effect of nitrogen fertilization on nitrate accumulation and yield of some field vegetables. In: Lambers H, Neeteson J, Stulen I (eds) Physiological, ecological and applied aspects of nitrogen metabolism in higher plants. M Nijhoff, Dordrecht, pp 489–492.

    Google Scholar 

  • Van der Boon J, Steenhuizen JW, Steingröver E (1990) Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration, NH4+/NO3- ratio and temperature of the recirculating nutrient solution. J Hortic Sci 65: 309–321

    Google Scholar 

  • Van Diest A (1986) Means of preventing nitrate accumulation in vegetable and pasture plants. In: Lambers H, Neeteson J, Stulen I (eds) Physiological, ecological and applied aspects of nitrogen metabolism in higher plants. M Nijhoff, Dordrecht, pp 455–471

    Google Scholar 

  • Van Noordwijk M, Wadman WP (1992) Effects of spatial variability of nitrogen supply on environmentally acceptable nitrogen fertilizer application rates to arable crops. Neth J Agric Sci 40: 51–72

    Google Scholar 

  • Veen BW, Kleinendorst A (1986) The role of nitrate in the osmoregulation of Italian ryegrass. Plant Soil 91: 433–436

    Article  CAS  Google Scholar 

  • Vermeer ITM, Pachen DMFA, Dallinga JW, Kleinjans JCS, van Maanen JMS (1998) Volatile N-nitrosamine formation after intake of nitrate at the ADI level in combination with an amine-rich diet. Environ Health Perspect 108: 459–463

    Article  Google Scholar 

  • Vincentz M, Moureaux T, Leydecker MT, Vaucheret H, Caboche M (1993) Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J 3: 315–324

    Article  PubMed  CAS  Google Scholar 

  • Von-Wiren N, Gazzarini S, Frommer W (1997) Regulation of mineral nitrogen uptake in plants. Plant Soil 196: 191–199

    Article  CAS  Google Scholar 

  • Walters CL, Walker R (1979) Consequences of accumulation of nitrate in plants. In: Hewitt EJ, Cuttings CV (eds) Nitrogen assimilation of plants. Academic Press, London, pp 637–677

    Google Scholar 

  • Westgeest P (1989) Scenario-onderzoek nitraatbelasting in Nederland in relatie tot de gezondheid. Katholieke Universiteit Nijmegen, Vakgroep Sociale Geneeskunde en Vakgroep Toxicologie, Nijmegen

    Google Scholar 

  • Zhang N, MacKown CT (1993) Nitrate fluxes and nitrate reductase activity of suspension-cultured tobacco cells. Effects of internal and external nitrate concentrations. Plant Physiol 102: 851–857

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steege, M.W., Stulen, I., Mary, B. (2001). Nitrogen in the Environment. In: Lea, P.J., Morot-Gaudry, JF. (eds) Plant Nitrogen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04064-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04064-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08731-8

  • Online ISBN: 978-3-662-04064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics