Skip to main content

Hard Ball Systems and Semi-Dispersive Billiards: Hyperbolicity and Ergodicity

  • Chapter
Hard Ball Systems and the Lorentz Gas

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 101))

Abstract

The purpose of this survey article is two-fold: First, we intend to introduce the reader into the world of several types of semi-dispersive billiards, such as Sinai’s hard sphere systems in tori or rectangular boxes, the Lorentz-gas, stadia (including Bunimovich’s celebrated one), and Wojtkowski’s systems of 1-D falling balls. The second part of the survey deals with some crucial technical aspects of proving full hyperbolicity (nonzero Lyapunov exponents almost everywhere) and ergodicity for such models of statistical mechanics.

Research supported by the Hungarian National Foundation for Scientific Research, grants OTKA-26176 and OTKA-29849.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bálint. Chaotic and ergodic properties of cylindric billiards. Ergod. Th. & Dynam. Sys. 19, 1127–1156

    Article  MATH  Google Scholar 

  2. L.A. Bunimovich. On the Ergodic Properties of Nowhere Dispersing Billiards. Commun. Math. Phys. 65, 295–312

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Bunimovich, C. Liverani, A. Pellegrinotti, Yu. Sukhov. Special Systems of Hard Balls that Are Ergodic. Commun. Math. Phys. 146, 357–396

    Article  MathSciNet  MATH  Google Scholar 

  4. L.A. Bunimovich, J. Rehacek. Nowhere dispersing 3-D billiards with non-vanishing Lyapunov exponents. Commun. Math. Phys. 189, no. 3, 729–757

    Article  MathSciNet  MATH  Google Scholar 

  5. L.A. Bunimovich, J. Rehacek. How high-dimensional stadia look like. Commun. Math. Phys. 197, no. 2, 277–301

    Google Scholar 

  6. L. A. Bunimovich, Ya. G. Sinai. The fundamental theorem of the theory of scattering billiards. Math. USSR-Sb. 19, 407–423

    Article  Google Scholar 

  7. L. A. Bunimovich, Ya. G. Sinai. Markov partitions for dispersing billiards. Commun. Math. Phys. 78, 247–280

    Article  MathSciNet  MATH  Google Scholar 

  8. L. A. Bunimovich, Ya. G. Sinai. Statistical properties of the Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78, 479–497

    Article  MathSciNet  MATH  Google Scholar 

  9. J.-P. Conze. Sur un critere de récurrence en dimension 2 pour les marches stationnaires, applications. Ergod. Th. & Dynam. Sys. 19, 1233–1245

    Article  MathSciNet  MATH  Google Scholar 

  10. N.I. Chernov. The ergodicity of a Hamiltonian system of two particles in an external field. Physica D 53, 233–239

    Article  MathSciNet  Google Scholar 

  11. N.I. Chernov. Local ergodicity of hyperbolic systems with singularities. Funct. Anal. and its Appl. 27, no. 1, 51–54

    Article  MathSciNet  Google Scholar 

  12. N.I. Chernov, C. Haskell. Nonuniformly hyperbolic K-systems are Bernoulli. Ergodic Theory and Dynamical Systems 16, 19–44

    Article  MathSciNet  MATH  Google Scholar 

  13. N.I. Chernov, S. Troubetzkoy. Ergodicity of billiards in polygons with pockets. Nonlinearity 11, 1095–1102

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Galperin. On systems of locally interacting and repelling particles moving in space. Trudy MMO 43, 142–196

    MathSciNet  Google Scholar 

  15. G.A. Hedlund. The Dynamics of Geodesic Flows. Bull. Amer. Math. Soc. 45, 241–260

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Hopf. Statistik der geodetischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber. Verh. Sachs. Akad. Wiss. Leipzig 91, 261–304

    MathSciNet  Google Scholar 

  17. N.S. Krylov. The Processes of Relaxation of Statistical Systems and the Criterion of Mechanical Instability. Thesis, Moscow; Republished in English by Princeton University Press. Princeton N.J. (1979)

    Google Scholar 

  18. A. Katok, J.-M. Strelcyn. Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities. Lecture Notes in Mathematics 1222, Springer Verlag

    MATH  Google Scholar 

  19. I.P. Kornfeld, Ya. G. Sinai, S.V. Fomin. Ergodic Theory. Nauka, Moscow 1980

    Google Scholar 

  20. A. Krámli, D. Szász. Central limit theorem for the Lorentz process via perturbation theory. Commun. Math. Phys. 91, 519–528

    Article  MATH  Google Scholar 

  21. A. Krámli, D. Szász. The problem of recurrence for the Lorentz process. Commun. Math. Phys. 98, 539–552

    Article  MATH  Google Scholar 

  22. A. Krámli, N. Simányi, D. Szász. Ergodic Properties of Semi-Dispersing Billiards I. Two Cylindric Scatterers in the 3-D Torus. Nonlinearity 2, 311–326

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Krámli, N. Simányi, D. Szász. A “Transversal” Fundamental Theorem for Semi-Dispersing Billiards. Commun. Math. Phys. 129, 535–560

    Article  MATH  Google Scholar 

  24. A. Krámli, N. Simányi, D. Szász. The K-Property of Three Billiard Balls. Annals of Mathematics 133, 37–72

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Krámli, N. Simányi, D. Szász. The K-Property of Four Billiard Balls. Commun. Math. Phys. 144, 107–148

    Article  MATH  Google Scholar 

  26. C. Liverani, M. Wojtkowski. Ergodicity in Hamiltonian systems. Dynamics Reported 4, 130–202

    Article  MathSciNet  Google Scholar 

  27. D. Ornstein, B. Weiss. On the Bernoulli Nature of Systems with Some Hyperbolic Structure. Ergodic Theory and Dynamical Systems 18, 441–456

    Article  MathSciNet  MATH  Google Scholar 

  28. Ya. Pesin. Characteristic Exponents and Smooth Ergodic Theory. Russian Math, surveys 32, 55–114

    Article  MathSciNet  Google Scholar 

  29. D.J. Rudolph. Classifying the isometric extensions of a Bernoulli shift. J. d’Anal. Math. 34, 36–50

    Article  MathSciNet  MATH  Google Scholar 

  30. K. Schmidt. On joint recurrence. C.R. Acad. Sci. Paris Sér. 1. Math. 327, no. 9., 837–842

    Article  Google Scholar 

  31. N. Simányi. Towards a proof of recurrence for the Lorentz process. Banach Center Publications 23, 265–276

    Google Scholar 

  32. N. Simányi. The K-property of N billiard balls I. Invent. Math. 108, 521–548

    Article  MathSciNet  MATH  Google Scholar 

  33. N. Simányi. The K-property of N billiard balls II. Computation of the Neutral Linear Space. Invent. Math. 110, 151–172

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Simányi. The characteristic exponents of the falling ball model. Commun. Math. Phys. 182, 457–468

    Article  MATH  Google Scholar 

  35. N. Simányi. Ergodicity of hard spheres in a box. Ergod. Th. & Dynam. Sys. 19, 741–766

    Google Scholar 

  36. N. Simányi. The complete hyperbolicity of cylindric billiards. To appear in Ergod. Th. & Dynam. Sys.

    Google Scholar 

  37. Ya. G. Sinai. On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics. Soviet Math. Dokl. 4, 1818–1822

    Google Scholar 

  38. Ya. G. Sinai. Dynamical systems with countably multiple Lebesgue spectrum II. Amer. Math. Soc. Transi. 68 ( 2), 34–38

    Google Scholar 

  39. Ya. G. Sinai. Dynamical Systems with Elastic Reflections. Russian Math. Surveys 25:2, 137–189

    Article  MathSciNet  MATH  Google Scholar 

  40. Ya. G. Sinai. Ergodic properties of the Lorentz gas. Funkt. Anal, and its Appl. 13, no. 3, 46–59

    MathSciNet  MATH  Google Scholar 

  41. Ya. G. Sinai, N.I. Chernov. Entropy of a gas of hard spheres with respect to the group of space-time shifts (Russian). Trudy Sem. Petrovsk. No. 8, 218–238

    MathSciNet  Google Scholar 

  42. Ya. G. Sinai, N.I. Chernov. Ergodic properties of certain systems of 2-D discs and 3-D balls. Russian Math. Surveys ( 3) 42, 181–207

    Article  Google Scholar 

  43. N. Simányi, D. Szász. The K-property of 4-D Billiards with Non-Orthogonal Cylindric Scatterers. J. Stat. Phys. 76, Nos. 1/2, 587–604

    Google Scholar 

  44. N. Simányi, D. Szász. The K-property of Hamiltonian systems with restricted hard ball interactions. Mathematical Research Letters 2, No. 6, 751–770

    Article  MathSciNet  MATH  Google Scholar 

  45. N. Simányi, D. Szász. Non-integrability of Cylindric Billiards and Transitive Lie Group Actions. Ergodic theory and dynamical systems 20, 593–610

    Article  Google Scholar 

  46. N. Simányi, D. Szász. Hard Ball Systems Are Completely Hyperbolic. Annals of Math. 149, 35–96

    Article  MATH  Google Scholar 

  47. N. Simányi, M. Wojtkowski. Two-particle billiard system with arbitrary mass ratio. Ergod. Th. & Dynam. Sys. 9, 165–171

    MATH  Google Scholar 

  48. D. Szász. Ergodicity of classical billiard balls. Physica A 194, 86–92

    Google Scholar 

  49. D. Szász. The K-property of ‘Orthogonal’ Cylindric Billiards. Commun. Math. Phys. 160, 581–597

    Article  MATH  Google Scholar 

  50. D. Szász. Boltzmann’s Ergodic Hypothesis, a Conjecture for Centuries? Studia Sci. Math. Hung 31, 299–322

    MATH  Google Scholar 

  51. D. Szász. Ball-Avoiding Theorems. Ergod. Th. & Dynam. Sys. (Invited Survey) To appear

    Google Scholar 

  52. H. van den Bedem. Statistical properties of hyperbolic systems with tangential singularities. Manuscript

    Google Scholar 

  53. L.N. Vaserstein. On Systems of Particles with Finite Range and/or Repulsive Interactions. Commun. Math. Phys. 69, 31–56

    Article  Google Scholar 

  54. M. Wojtkowski. Invariant families of cones and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 5, 145–161

    MathSciNet  MATH  Google Scholar 

  55. M. Wojtkowski. Principles for the Design of Billiards with Nonvanishing Lyapunov Exponents. Commun. Math. Phys. 105, 391–414

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Wojtkowski. Measure theoretic entropy of the system of hard spheres. Ergod. Th. & Dynam. Sys. 8, 133–153

    MathSciNet  MATH  Google Scholar 

  57. M. Wojtkowski. A system of one-dimensional balls with gravity. Commun. Math. Phys. 126, 507–533

    Article  MathSciNet  MATH  Google Scholar 

  58. M. Wojtkowski. The system of one-dimensional balls in an external field II. Commun. Math. Phys. 127, 425–432

    Article  MathSciNet  MATH  Google Scholar 

  59. M. Wojtkowski. Linearly stable orbits in 3-dimensional billiards. Commun. Math. Phys. 129, no. 2, 319–327

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simányi, N. (2000). Hard Ball Systems and Semi-Dispersive Billiards: Hyperbolicity and Ergodicity. In: Szász, D. (eds) Hard Ball Systems and the Lorentz Gas. Encyclopaedia of Mathematical Sciences, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04062-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04062-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08711-0

  • Online ISBN: 978-3-662-04062-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics