Skip to main content

Tau Protein: Role in Intracellular Traffic and Development of Cell Polarity

  • Conference paper

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Abstract

Pathologically aggregated and hyperphosphorylated tau protein is a characteristic feature of Alzheimer’s disease and related tauopathies. The best known physiological function of tau is the stabilization of neuronal microtubules, which can be regulated by phosphorylation. However, other functions have recently begun to emerge. Here we focus on two new aspects, the role of tau phosphorylation in the outgrowth of cell processes, and the role of tau in intracellular traffic. 1) Phosphorylation of tau at Ser/Thr-Pro motifs is somewhat inhibitory to process outgrowth in Sf9 cells, but (transient) phosphorylation at KXGS motifs in the repeat domain is essential for process formation, even though this type of phosphorylation destabilizes microtubules. 2) Elevation of tau inhibits intracellular transport of vesicles and cell organelles, preferentially in the kinesin-dependent direction towards the cell periphery. This leads to an accumulation of mitochondria or intermediate filaments in the cell center and their depletion from neuntes, thus making neurites vulnerable. This process would explain a toxic role of elevated tau in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baas PW, Pienkowski TP, Kosik KS (1991) Processes induced by tau expression in Sf9-cells have an axon-like microtubule organization. J Cell Biol 115:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Biernat J, Mandelkow EM (1999) The development of cell processes induced by tau protein requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains. Mol Biol Cell 10:727–740

    PubMed  CAS  Google Scholar 

  • Biernat J, Gustke N, Drewes G, Mandelkow E-M, Mandelkow E (1993) Phosphorylation of serine 262 strongly reduces the binding of tau protein to microtubules: Distinction between PHF-like immuno-reactivity and microtubule binding. Neuron 11:153–163

    Article  PubMed  CAS  Google Scholar 

  • Blennow K, Wallin A, Agren H, Spenger C, Siegfried J, Vanmechelen E (1995) Tau protein in cerebrospinal fluid: A biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol 26:231–245

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  • Braak E, Braak H, Mandelkow E-M (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neurophil threads. Acta Neuropathol 87:554–567

    Article  PubMed  CAS  Google Scholar 

  • Brandt R, Lee G, Teplow D, Shalloway D, Abdelghany M (1994) Differential effect of phosphorylation and substrate modulation on tau’s ability to promote microtubule growth and nucleation. J Biol Chem 269:11776–11782

    PubMed  CAS  Google Scholar 

  • Bulinski JC, McGraw TE, Gruber D, Nguyen H-L, Sheetz MP (1997) Overexpression of MAP4 inhibits organelle motility and trafficking in vivo. J Cell Sci 110:3055–3064

    PubMed  CAS  Google Scholar 

  • Burkhardt JK, Echeverri CJ, Nilsson T, Vallée RB (1997) Overexpression of the dynamitin (p50) subunit of the dynaction complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 139:469–484

    Article  PubMed  CAS  Google Scholar 

  • Drewes G, Ebneth A, Preuss U, Mandelkow E-M, Mandelkow E (1997) MARK — a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89:297–308

    Article  PubMed  CAS  Google Scholar 

  • Drewes G, Ebneth A, Mandelkow E-M (1998) MAPs, MARKs, and microtubule dynamics. Trends Bio-chem Sci 23:307–311

    Article  CAS  Google Scholar 

  • Drubin D, Kirschner M (1986) Tau protein function in living cells. J Cell Biol 103:2739–2746

    Article  PubMed  CAS  Google Scholar 

  • Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E-M, Mandelkow E (1998) Overexpression of tau protein alters vesicle trafficking, distribution of mitochondria and organization of the endoplasmic reticulum in living cells: implications for Alzheimer’s disease. J Cell Biol 143:777–794

    Article  PubMed  CAS  Google Scholar 

  • Edson K, Weisshaar B, Matus A (1993) Actin depolymerization induces process formation on MAP2-transfected nonneuronal cells. Development 117:689–700

    PubMed  CAS  Google Scholar 

  • Esmaeli-Azad B, McCarty JH, Feinstein SC (1994) Sense and antisense transfection analysis of tau-function: Tau influences net microtubule assembly, neurite outgrowth and neuritic stability. J Cell Sci 107:869–879

    PubMed  CAS  Google Scholar 

  • Friedhoff P, Mandelkow E (1999) Tau Protein. In: Kreis T, Vale R (eds) Guidebook to the cytoskeletal and motor proteins. Oxford University Press, Oxford, in press.

    Google Scholar 

  • Haigiwara H, Yorifuji H, Sato-Yoshitake R, Hirokawa N (1994) Competition between motor molecules (kinesin and cytoplasmic dynein) and fibrous microtubule-associated proteins in binding to microtubules. J Biol Chem 269:3581–3589

    Google Scholar 

  • Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, Sato-Yoshitake R, Takei Y, Noda T, Hirokawa N (1994) Altered microtubule organization in small-caliber axons of mice lacking tau protein. Nature 369:488–491

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, Trojanowski JQ (1997) Editorial on consensus recommendations for the postmortem diagnosis of Alzheimer’s disease from the National Institute on Aging and the Reagan Institute working group on diagnostic criteria for the neuropathological assessment of Alzheimer’s disease. J Neuropathol Exp Neurol 56:1095–1097

    Article  PubMed  CAS  Google Scholar 

  • Illenberger S, Zheng-Fischhöfer Q, Preuss U, Stamer K, Godemann R, Baumann K, Mandelkow E-M, Mandelkow E (1998) The endogenous and cell-cycle dependent phosphorylation of the microtubule-associated protein tau in neuroblastoma and CHO cells: Implications for protein kinases cdc2 and PKA. Mol Biol Cell 9:1495–1512

    PubMed  CAS  Google Scholar 

  • Johnson GV, Hartigan JA (1998) Tau protein in normal and Alzheimer’s disease brain — an update. Alzheimer’s Disease Rev 3:125–141

    CAS  Google Scholar 

  • Kanai Y, Hirokawa N (1995) Sorting mechanisms of tau and MAP2 in neurons: Suppressed axonal transit of MAP2 and locally regulated microtubule binding. Neuron 14:421–432

    Article  PubMed  CAS  Google Scholar 

  • Kanai Y, Takemura R, Oshima T, Mori H, Ihara Y, Yanagisawa M, Masaki T, Hirokawa N (1989) Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA. J Cell Biol 109:1173–1184

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS, McConlogue L (1994) Microtubule-associated protein function: lessons from expression in Spodoptera frugiperda cells. Cell Mot Cytoskel 28:195–198

    Article  CAS  Google Scholar 

  • Lee G, Cowan N, Kirschner M (1988) The primary structure and heterogeneity of tau protein from mouse brain. Science 239:285–288

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Newman S, Gard D, Band H, Panchamoorthy G (1988) Tau interacts with src-family nonreceptor tyrosine kinases. J Cell Sci 111:3167–3177

    Google Scholar 

  • Liao H, Il YR, Brautigan DL, Gundersen GG (1998) Protein phosphatase-1 is targeted to microtubules by the microtubule-associated protein tau. J Biol Chem 273:21901–21908

    Article  PubMed  CAS  Google Scholar 

  • Lippincott-Schwatz J (1998) Cytoskeletal proteins and Golgi dynamics. Curr Opin Cell Biol 10:52–59

    Article  Google Scholar 

  • Litman P, Barg J, Ginzburg I (1994) Microtubules are involved in the localization of tau messenger-RNA in primary neuronal cell cultures. Neuron 13:1463–1474

    Article  PubMed  CAS  Google Scholar 

  • Lopez LA, Sheetz MP (1993) Steric inhibition of cytoplasmic dynein and kinesin motility by MAP2. Cell Mot Cytoskel 24:1–16

    Article  CAS  Google Scholar 

  • Matsuo ES, Shin RW, Billingsley ML, Vandevoorde A, O’Connor M, Trojanowski JQ, Lee VMY (1994) Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimers disease paired helical filament tau. Neuron 13:989–1002

    Article  PubMed  CAS  Google Scholar 

  • Matus A (1994) Stiff microtubules and neuronal morphology. Trends Neurosci 17:19–22

    Article  PubMed  CAS  Google Scholar 

  • Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K, Ihara Y (1995) Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem 270:823–829

    Article  PubMed  CAS  Google Scholar 

  • Paschal BM, Obar RA, Vallée RB (1989) Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C-terminus of tubulin. Nature 342:569–572

    Article  PubMed  CAS  Google Scholar 

  • Rodionov VI, Gyoeva FK, Tanaka E, Bershadsky AD, Vasiliev JM, Gelfand VI (1993) Microtubule-dependent control of cell-shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain. J Cell Biol 123:1811–1820

    Article  PubMed  CAS  Google Scholar 

  • Sato-Harada R, Okabe S, Umeyama T, Kanai Y, Hirokawa N (1996) Microtubule-associated proteins regulate microtubule function as the track for intracellular membrane organelle transports. Cell Struct Funct 21:283–295

    Article  PubMed  CAS  Google Scholar 

  • Sontag E, Nunbhakdi-Craig V, Lee G, Bloom GS, Mumby MC (1996) Regulation of the phosphorylation state and microtubule-binding activity of tau by protein phosphatase 2a. Neuron 17:1201–1207

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M, Goedert M (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci 21:428–433

    Article  PubMed  CAS  Google Scholar 

  • Trinczek B, Biernat J, Baumann K, Mandelkow E-M, Mandelkow E (1995) Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Mol Biol Cell 6:1887–1902

    PubMed  CAS  Google Scholar 

  • Trinczek B, Ebneth A, Mandelkow E-M, Mandelkow E (1999) Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci, in press

    Google Scholar 

  • Von Massow A, Mandelkow E-M, Mandelkow E (1989) Interaction between kinesin, micotubules, and microtubule-associated protein-2. Cell Mot Cytoskel 14:562–571

    Article  Google Scholar 

  • Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862

    Article  PubMed  CAS  Google Scholar 

  • Weisshaar B, Doll T, Matus A (1992) Reorganization of the microtubular cytoskeleton by embryonic microtubule-associated protein 2 (MAP2c). Development 116:1151–1161

    PubMed  CAS  Google Scholar 

  • Wille H, Drewes G, Biernat J, Mandelkow E-M, Mandelkow E (1992) Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J Cell Biol 118:573–584

    Article  PubMed  CAS  Google Scholar 

  • Zheng-Fischhöfer Q, Biernat J, Mandelkow E-M, Illenberger S, Godemann R, Mandelkow E (1998) Sequential phosphorylation of tau-protein by GSK-3b and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT-100 and requires a paired helical filamentlike conformation. Eur J Biochem 252:542–552.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mandelkow, EM. et al. (2000). Tau Protein: Role in Intracellular Traffic and Development of Cell Polarity. In: Lee, V.MY., Trojanowski, J.Q., Buée, L., Christen, Y. (eds) Fatal Attractions: Protein Aggregates in Neurodegenerative Disorders. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04056-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04056-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08649-6

  • Online ISBN: 978-3-662-04056-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics