Advertisement

Apoptosis — Searching for the Central Executioner

  • E. Daugas
  • G. Kroemer
Conference paper
  • 135 Downloads
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 6)

Abstract

Apoptosis may be defined as a regulated lethal process in which the cell activates catabolic processes which, within the limits of a near-to-intact plasma membrane, lead to a stereotyped ensemble of biochemical and morphological alterations. Such alterations include a reduction in cell size, a condensation of chromatin, and changes in the physicochemistry of the plasma membrane facilitating the recognition and heterophagic removal of the apoptotic cell by adjacent normal cells. The most striking morphological change in apoptotic cells concerns the nucleus which invariably exhibits chromatin condensation, mostly associated with enzymatic degradation of nuclear DNA. However, chromatin condensation is a sign of apoptosis rather than a mechanism leading to cell death, since non-nuclear apoptosis-associated alterations can be induced in anucleate cells (cytoplasts), as this has been shown in 1994 (Jacobson et al. 1994, Schulze-Osthoff et al. 1994).

Keywords

Death Domain Extrinsic Pathway Betulinic Acid Central Executioner Mitochondrial Membrane Permeabilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BA

bongkrekic acid

CsA

cyclosporin A

ΔΨm

mitochondrial transmenbrane potential

PTPC

permeability transition pore complex

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam A, Cohen LY, Aouad S, Sekaly RP (1999) Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells J. Exp. Med. 190: 1879–1890Google Scholar
  2. Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F (1999) Mitochondria and cell death — Mechanistic aspects and methodological issues Eur. J. Biochem. 264: 687–701PubMedCrossRefGoogle Scholar
  3. Berndt C, Möpps B, Angermüller S, Gierschik P, Krammer PH (1998) CXCR4 and CD4 mediate a rapid CD95-independent cell death in CD4+ cells Proc. Natl. Acad. Sci. USA 95: 12556–12561Google Scholar
  4. Budijardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis Annu. Rev. Cell Dev. Biol. 15: 269–290Google Scholar
  5. Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P (1999) Interdigital cell death can occur through a necrotic and caspase-independent pathway Curr. Biol. 9: 967–970PubMedCrossRefGoogle Scholar
  6. Colussi PA, Kumar S (1999) Targeted disruption of caspase genes in mice: What they tell us about the functions of individual caspases in apoptosis Immunol. Cell Biol. 77: 58–63Google Scholar
  7. Deas O, Dumont C, MacFarlane M, Rouleau M, Hebib C, Harper F, Hirsch F, Charpentier B, Cohen GM, Senik A (1998) Caspase-independent cell death induced by anti-CD2 or staurosporine in activated human peripheral T lymphocytes J. Immunol. 161: 3375–3383PubMedGoogle Scholar
  8. Green DR, Kroemer G (1998) The central executioner of apoptosis: mitochondria or caspases? Trends Cell Biol. 8: 267–271PubMedCrossRefGoogle Scholar
  9. Jacobson MD, Burne JF, Raff MC (1994) Programmed cell death and Bc1–2 protection in the absence of a nucleus EMBO J. 13: 1899–1910Google Scholar
  10. Jacotot E, Ravagnan L, Loeffler M, Ferri KF, Vieira HLA, Zamzami N, Costantini P, Druillennec S, Hoebeke J, Brian JP, Irinopoulos T, Daugas E, Susin SA, Cointe D, Xie ZH, Reed JC, Rogues BP, Kroemer G (2000) The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondria] permeability transition pore J. Exp. Med. 191: 33–45Google Scholar
  11. Kennedy NJ, Kataoka T, Tschopp J, Budd RC (1999) Caspase activation is required for T cell proliferation J. Exp. Med. 190: 1891–1895Google Scholar
  12. Kitanaka C, Kuchino Y (1999) Caspase-independent programmed cell death with necrotic morphology Cell Death Differ. 6: 508–515CrossRefGoogle Scholar
  13. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bc1–2 regulation of apoptosis Science 275: 1132–1136Google Scholar
  14. Kroemer G (1997a) Mitochondrial implication in apoptosis. Towards an endosymbiotic hypothesis of apoptosis evolution Cell Death Differentiation 4: 443–456CrossRefGoogle Scholar
  15. Kroemer G (1997b) The proto-oncogene Bc1–2 and its role in regulating apoptosis Nature Medicine 3: 614–620Google Scholar
  16. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis Annu. Rev. Physiol. 60: 619–642Google Scholar
  17. Kroemer G, Zamzami N, Susin SA (1997) Mitochondria] control of apoptosis Immunol. Today 18: 44–51Google Scholar
  18. Liu XS, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome C Cell 86: 147–157Google Scholar
  19. Lorenzo HK, Susin SA, Penninger J, Kroemer G (1999) Apoptosis inducing factor (AlF): a phylogenetically old, caspase-independent effector of cell death Cell Death Differ. 6: 516–524Google Scholar
  20. Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Haeffner A, Hirsch F, Geuskens M, Kroemer G (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis J. Exp. Med. 184: 1155–1160Google Scholar
  21. Martin SJ, Green DR (1995) Protease activation during apoptosis: death by a thousand cuts? Cell 82: 349–352PubMedCrossRefGoogle Scholar
  22. McConkey DJ, Hartzell P, Nicotera P, Orrenius S (1989) Calcium-activated DNA fragmentation kills immature thymocytes FASEB J. 3: 1843–1849Google Scholar
  23. Patterson S, Spahr CS, Daugas E, Susin SA, Irinopoulos T, Koehler C, Kroemer G (2000) Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition Cell Death Differ. in press: Penninger JM, Kroemer G (1998) Molecular and cellular mechanisms of T lymphocyte apoptosis Adv. Immunol. 68: 51–144Google Scholar
  24. Peter ME, Krammer PH (1998) Mechanisms of CD95 (APO-l/Fas)-mediated apoptosis Curr. Op. Immunol. 10: 545–551Google Scholar
  25. Quignon F, DeBels F, Koken M, Feunteun J, Ameisen JC, de Thé H (1998) PML induces a novel caspase-independent death process Nat. Gen. 20: 259–265CrossRefGoogle Scholar
  26. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model Proc. Natl. Acad. Sci. USA 96: 10964–10967Google Scholar
  27. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin K-M, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways EMBO J. 17: 1675–1687Google Scholar
  28. Schulze-Osthoff K, Walczak H, Droge W, Krammer PH (1994) Cell nucleus and DNA fragmentation are not required for apoptosis J. Cell Biol. 127: 15–20PubMedCrossRefGoogle Scholar
  29. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Larochette N, Alzari PM, Kroemer G (1999a) Mitochondrial release of caspases-2 and —9 during the apoptotic process J. Exp. Med. 189: 381–394Google Scholar
  30. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999b) Molecular characterization of mitochondria) apoptosis-inducing factor Nature 397: 441–446Google Scholar
  31. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bc1–2 inhibits the mitochondrial release of an apoptogenic protease J. Exp. Med. 184: 1331–1342Google Scholar
  32. Yin X-M, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Rothe KA, Korsmeyer SJ (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis Nature 400: 886–89Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • E. Daugas
  • G. Kroemer

There are no affiliations available

Personalised recommendations