Skip to main content

On Stromatolite Lamination

  • Chapter
Microbial Sediments

Abstract

Causes of lamination, the most salient property of stromatolitic structures, are examined in terms of sedimentary kinetics and stasis using case histories of modern stromatolite-building biota from the Bahama Carbonate Platform, Great Sippewissett Salt Marsh of New England, and Hamelin Pool, Shark Bay, Australia. The findings are compared with fossil evidence preserved in silicified Mesoproterozoic stromatolites of the Gaoyuzhuang Formation, northern China. Multitrichomous cyanobacteria and their responses to sedimentation characterize the conditions of fluctuating sedimentation rates, whereas coccoid cyanobacteria colonize and stabilize sediments during periods of sedimentary stasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Awramik SM, Margulis L, Barghoorn ES (1976) Evolutionary processes in the formation of stromatolites. In: Walter MR (ed) Stromatolites: developments in sedimentology, vol 20. Elsevier, Amsterdam, pp 149–162

    Chapter  Google Scholar 

  • Awramik SM, Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc Natl Acad Sci USA 85: 1327–1329

    Article  Google Scholar 

  • Browne KM (1993) Lamination in Recent bahamian subtidal stromatolites: origin and lithification. PhD Diss, University of Miami, Miami, FL, 296 pp

    Google Scholar 

  • Cohen Y, Rosenberg E (eds) (1989) Microbial mats, physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC

    Google Scholar 

  • D’Amelio, ED, Cohen Y, Des Marais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. In: Cohen Y, Rosenberg E (eds) Microbial mats. American Society for Microbiology, Washington, DC, pp 97–113

    Google Scholar 

  • Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant sub-tidal stromatolites forming in normal salinity waters. Nature 324 55–58

    Google Scholar 

  • Dravis J (1983) Hardened subtidal stromatolites, Bahamas. Science 219: 385–386

    Article  Google Scholar 

  • Duke EL, Reimann BEF (1977) The ultrastructure of the diatom cell. In: Werner D (ed.) The biology of diatoms. University of California Press, Berkeley, p. 65–109

    Google Scholar 

  • Evenari M, Gutterman Y, Gavish E (1985) Botanical studies on coastal salinas and sabkhas of the Sinai. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems. Springer, Berlin Heidelberg New York, pp 145–182

    Chapter  Google Scholar 

  • Friedman GM, Krumbein WE (eds) (1985) Hypersaline ecosystems, the Gavish Sabkha. Ecological studies 53. Springer, Berlin Heidelberg New York, pp 1–484

    Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27: 395–409

    Article  Google Scholar 

  • Gebelein CD (1969) Distribution, morphology and accretion rate of Recent subtidal algal stromatolites, Bermuda. J Sed Petrol 39: 49–69

    Google Scholar 

  • Gerdes G, Krumbein WE, Holtkamp E (1985) Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems. Springer, Berlin Heidelberg New York, pp 238–266

    Chapter  Google Scholar 

  • Gibson J, Leadbetter ER, Jannasch HW (1984) Great Sippewissett Marsh: a summary of projects carried out by students in the Microbial Ecology Course of the Marine Biological Laboratory, Woods Hole, during summers 1972–1981. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: stromatolites, Alan R. Liss, New York, pp 95–100

    Google Scholar 

  • Golubic S (1973) The relationship between blue-green algae and carbonate deposits. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell Scientific Publications, Oxford, pp 434–472

    Google Scholar 

  • Golubic S (1976) Organisms that build stromatolites. In: Walter MR (ed) Stromatolites, developments in sedimentology, vol zo. Elsevier, Amsterdam, pp 113–126

    Google Scholar 

  • Golubic S (1983) Stromatolites, fossil and recent: a case history. In: Westbroek P, Jong EW (eds) Biomineralization and biological metal accumulation. D Reidel, Dordrecht, pp 313–326

    Chapter  Google Scholar 

  • Golubic S (1985) Microbial mats and modern stromatolites in Shark Bay, Western Australia. In: Caldwell DE, Brierley JA, Brierley CL (eds) Planetary ecology. Van Nostrand Reinhold, New York, pp 3–16

    Google Scholar 

  • Golubic S (1991) Modern stromatolites–a review. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York, pp 541–561

    Chapter  Google Scholar 

  • Golubic S (1992) Microbial mats of Abu Dhabi. In: Margulis L, Olendzenski L (eds) Environmental evolution: effects of the origin and evolution of life on planet earth. MIT Press, Cambridge, MA, pp 103–130

    Google Scholar 

  • Golubic S, Focke JW (1978) Phormidium hendersonii Howe: identity and significance of a modern stromatolite building microorganism. J Sed Petrol 48: 751–764

    Google Scholar 

  • Golubic S, Browne KM (1996) Schizothrix gebeleinii sp. nov. builds subtidal stromatolites, Lee Stocking Islands, Bahamas. Arch Hydrobiol Suppl/ Algol Stud 83: 273–290

    Google Scholar 

  • Grotzinger JP, Reed JF (1983) Evidence for primary aragonite precipitation, lower Proterozoic (1.9 Ga) Rocknest dolomite, Wopmay orogen, northwest Canada. Geology 11: 710–713

    Google Scholar 

  • Haley RB (1976) Textural variation within Great Salt Lake algal mounds. In: Walter MR (ed) Stromatolites, developments in sedimentology, voll 20. Elsevier, Amsterdam, pp 435–445

    Google Scholar 

  • Hein MK, Winsborough BM, Davis JS, Golubic S (1993) Extracellular structures produced by marine species of Mastogloia. Diatom Res 8: 1–16

    Article  Google Scholar 

  • Hofmann HJ (1969) Attributes of stromatolites. Geological Survey of Canada, Pap 69–39, 58 pp

    Google Scholar 

  • Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Paleontol 50: 1040–1073

    Google Scholar 

  • Horodyski RJ, Vonder Haar SP (1975) Recent calcareous stromatolites from Laguna Mormona ( Baja California) Mexico. J Sed Petrol 45: 894–906

    Google Scholar 

  • Horodyski RJ, Donaldson, A (1980) Microfossils from the middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Res 11: 125–159

    Google Scholar 

  • Jorgensen BB, Revsbech NP (1993) Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp. in 02 and H2S microgradients. Appl Environ Microbiol 45: 1261–1270

    Google Scholar 

  • Kalkowsky E (1908) Oolith and Stromatolith im norddeutschen Buntsandstein. Z Dtsch Geol Gesellsch 60: 68–125

    Google Scholar 

  • Knoll AH, Golubic S (1992) Modern and ancient cyanobacteria. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early organic evolution: implications for mineral and energy resources. Springer, Berlin Heidelberg New York, pp 450–462

    Chapter  Google Scholar 

  • Larkin JM, Strohl WR (1983) Beggiatoa, Thiothrix, and Thioploca. Annu Rev Microbiol 37: 341–367

    Google Scholar 

  • Logan BW (1961) Cryptozoan and associate stromatolites from the Recent of Shark Bay, Western Australia. J Geol 69: 517–533

    Article  Google Scholar 

  • Monty CLV (1965) Recent algal stromatolites in the windward lagoon, Andros Island, Bahamas. Bull Ann Soc Géol Belg 88B: 269–276

    Google Scholar 

  • Monty CLV (1976) The origin and development of cryptalgal fabrics. In: Walter MR (ed) Stromatolites. developments in sedimentology, vol 20. Elsevier, Amsterdam, pp 193–249

    Chapter  Google Scholar 

  • Monty CLV (1979) Scientific Reports of the Belgian expedition on the Australian Great Barrier Reefs. 1967. Sedimentology 2. Monospecific stromatolites from the Great Barrier Reef tract and their paleontological significance. Ann Soc Géol Belg 101: 163–171

    Google Scholar 

  • Montoya TH, Golubic S (1991) Morphological variability in natural populations of mat-forming cyanobacteria in the salinas of Huacho, Lima, Peru. Arch Hydrobiol Suppl./Algol Stud 64: 423–441

    Google Scholar 

  • Nicholson JAM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45: 343–364

    Google Scholar 

  • Oehler DZ (1978) Microflorta of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. Alcheringa 2: 269–309

    Article  Google Scholar 

  • Park R (1976) A note on the significance of lamination in stromatolites. Sedimentology 23: 379–393

    Article  Google Scholar 

  • Pierson BK, Oesterle A, Murphy GL (1987) Pigments, light penetration, and photosynthetic activity on the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts. FEMS Microbiol. Ecol 45: 365–376

    Google Scholar 

  • Pierson BK, Olson JM (1987) Evolution of photosynthesis in anoxygenic photosynthetic prokaryotes. In: Cohen Y, Rosenberg, E (eds) Microbial mats. American Society for Microbiology, Washington, DC, pp 402–427

    Google Scholar 

  • Playford PE, Cockbain AE (1976) Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia. In: Walter MR (ed) Stromatolites. Developments in sedimentology, vol zo. Elsevier, Amsterdam, pp 389–411

    Google Scholar 

  • Potts M (1980) Blue-green algae (Cyanophyta) in marine coastal environments of the Sinai Peninsula; distribution, zonation, stratification and taxonomic diversity. Phycologia 19: 60–73

    Article  Google Scholar 

  • Reid RP, Macintyre IG, Browne KM, Steneck RS, Miller T (1995) Modern marine stromatolites in the Exuma Cays, Bahamas: uncommonly common. Facies 33: 1–18

    Article  Google Scholar 

  • Riding R (1994) Stromatolite survival and change: the significance of Shark Bay and Lee Stocking Island subtidal columns. In: Krumbein WE, Pateerson DM, Stal LJ (eds) Biostabilization of sediments. Bibliotheks und Informationssystem der Universitt, Oldenburg-Verlag, Odenburg, pp 183–202

    Google Scholar 

  • Riding R, Awramik SM, Winsborough BM, Griffin KM, Dill RF (1991) Bahamian giant stromatolites: microbial composition of surface mats. Geol Mag 128: 227–234

    Article  Google Scholar 

  • Seong-Joo L, Golubic S (1998) Multi-trichomous cyanobacterial microfossils from the Mesoproterozoic Gaoyuzhuang Formation, China: paleoecological and taxonomic implications. Lethaia 31: 169–184

    Article  Google Scholar 

  • Seong-Joo L, Golubic S (1999) Microfossil populations in the context of synsedimentary micrite deposition and acicular carbonate precipitation: Mesoproterozoic Gaoyuzhuang Formation, China. Precambrian Res 96: 183–208

    Google Scholar 

  • Sergeev VN, Knoll AH, Grotzinger JP (1995) Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, Northern Siberia. J Paleontol 69: 1–37

    Google Scholar 

  • Van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113: 3–25

    Article  Google Scholar 

  • Van Gemerden H, de Wit R (1989) Phototrophic and chemotrophic growth of the purple sulfur bacterium Thiocapsa roseopersicina. In: Cohen Y, Rosenberg E (eds) Microbial mats. Am Society for Microbiol., Washington, DC, pp 313–319

    Google Scholar 

  • Winsborough B, Golubic S (1987) Stromatolitic structures of inland waters built by diatoms. J Phycol 23: 195–201

    Article  Google Scholar 

  • Zhang Yun (1981) Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (early Sinian: Riphean) Hebei, China. J Paleontol 55: 485–506

    Google Scholar 

  • Zhang Zhongying (1986) Solar cyclicity in the Precambrian micro-fossil record. Palaeontology 29: 101–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seong-Joo, L., Browne, K.M., Golubic, S. (2000). On Stromatolite Lamination. In: Riding, R.E., Awramik, S.M. (eds) Microbial Sediments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04036-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04036-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08275-7

  • Online ISBN: 978-3-662-04036-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics