Skip to main content

Diatoms and Benthic Microbial Carbonates

  • Chapter
Microbial Sediments

Abstract

Benthic diatoms date from the Early Jurassic and since that time have probably been associated with stromatolites, travertines, and related microbial carbonates in much the same manner as they are today. Diatoms and the extracellular mucilage they produce are important in the stromatolite building process by trapping and binding grains and in the diagenesis of the sediments. Mucilage is produced and deposited on the substrate during migration by motile diatoms and comprises the stalks, tubes, filaments, and envelopes of sessile species. In marine stromatolite and associated habitats, diatoms coat ooids and larger grains and other hardgrounds, as well as the filaments of cyanobacteria and algae. In freshwater carbonate settings diatoms are also a significant component of most microbial communities. To determine the quality of diatom preservation in fossil freshwater microbial carbonates, material from extensive Quaternary travertine deposits in Mexico and Italy was analyzed. Samples were selected to represent as many travertine depositional facies as possible. Results show that diatoms are preserved within all the fossil travertine facies examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Awramik SM, Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc Natl Acad Sci USA 85: 1327–1329

    Article  Google Scholar 

  • Bathurst RG (1967) Subtidal gelatinous mat, sand stabilizer and food, Great Bahama Bank. J Geol 75: 736–738

    Article  Google Scholar 

  • Blenkinsopp SA, Lock MA (1994) The impact of storm-flow on river biofilm architecture. J Phycol 30: 807–818

    Article  Google Scholar 

  • Boney AD (1981) Mucilage: the ubiquitous algal attribute. Br Phycol J 16: 15–132

    Google Scholar 

  • Braithwaite CJ (1979) Crystal textures of Recent fluvial pisolites and laminated crystalline crusts in Dyfed, South Wales. J Sediment Petrol 49: 181–194

    Google Scholar 

  • Braithwaite CJ, Zedef V (1996) Hydromagnesite stromatolites and sediments in an alkaline lake, Saida Golu, Turkey. J Sediment Res 66: 991–1002

    Google Scholar 

  • Brancaccio L, D’Argenio B, Ferreri V, Stanzione D, Taddeucci A, Voltaggio M (1988) I travertini di Rocchetta a Volturno (molise) datazioni con 230Th e modello deposizionale. Mem Soc Geol 11: 1–11

    Google Scholar 

  • Caran SC, Winsborough BM, Neely JA, Valastro S Jr (1995) Radiocarbon age of carbonate sediments (travertine, pedoconcretions, and biogenic carbonates): a new method based on organic residues, employing stable-isotope control of carbon sources. Current Res Pleistocene 12: 75–77

    Google Scholar 

  • Caran SC, Neely JA, Winsborough BM, Sorensen F, Valastro S Jr (1996) A late paleoindian/early archaic water well in Mexico–possible oldest water-management feature in the new world. Geoarchaeology 11: 1–35

    Article  Google Scholar 

  • Chafetz HS, Folk RL (1984) Travertines: depositional morphology and the bacterially constructed constituents. J Sedimentary Petrol 54: 289–316

    Google Scholar 

  • Chafetz HS, Buczynski C (1992) Bacterially induced lithification of microbial mats. Palaios 7: 277–293

    Article  Google Scholar 

  • Chafetz HS, Rush PF, Utech M (1991) Microenvironmental controls on mineralogy and habit of CaCo3 precipitates: an example from an active travertine stream. Sedimentology 38: 107–126

    Google Scholar 

  • Chafetz HS, Srdoc D, Horvatincic N (1994) Early diagenesis of Plitvice lakes waterfall and barrier travertine deposits. Géogr Phys Quat 48: 247–255

    Google Scholar 

  • Chafetz HS, Lawrence JR (1994) Stable Isotopic Variability Within Modern Travertines. Geogr Phys Quat 48: 257–273

    Google Scholar 

  • Cohn SA, Disparti NC (1994) Environmental factors influencing diatom cell motility. J Phycol 30: 818–828

    Article  Google Scholar 

  • Cohn SA, Weitzell Jr RE (1996) Ecological considerations of diatom cell motility. I. Characterization of motility and adhesion in four diatom species. J Phycol 32: 928–939

    Google Scholar 

  • Daniel GF, Chamberlain AHL, Jones EBG (1987) Cytochemical and electron microscopical observations on the adhesive materials of marine fouling diatoms. Br Phycol J 22: 101–118

    Article  Google Scholar 

  • D’argenio B, Ferreri V (1987) A brief outline of sedimentary models for Pleistocene travertine accumulation in southern Italy. Rend Soc Geol 119: 67–170

    Google Scholar 

  • Davis JS, Rands DG, Hein MK (1989) Biota of the tufa deposit of Fall- ing Springs, Illinois. U.S.A. Trans Am Microsc Soc 108: 403–409

    Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanog. Mar Biol Annu Rev 28: 73–153

    Google Scholar 

  • Défarge C, Trichet J, Jaunet A, Robert M, Tribble J, Sansone FJ (1996) Texture of microbial sediments revealed by cryo-scanning electron microscopy. J Sediment Petrol 66: 935–947

    Google Scholar 

  • Edgar LA, Picket-Heaps JD (1984) Diatom locomotion. Progr Phycol Res 3: 47–88

    Article  Google Scholar 

  • Eggleston JR, Dean WE (1976) Freshwater stromatolitic bioherms in Green Lake, New York. In: Walter MR (ed) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 479–488

    Chapter  Google Scholar 

  • Ehrlich A (1995) Atlas of the inland-water diatom flora of Israel. Geol Soc of Israel, Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Emeis KC, Richnow HH, Kempe S (1987) Travertine formation in Plitvice National Park, Yugoslavia: chemical versus biological control. Sedimentology 34: 595–609

    Article  Google Scholar 

  • Golubic S (1967) Algenvegetation der Felsen. Binnengewasser 23. Schweizerbart, Stuttgart

    Google Scholar 

  • Golubic S (1976) Organisms that build stromatolites. In:Walter MR (ed) Stromatolites. Developments in sedimentology 20. Elsevier, Amsterdam, pp 113–126

    Google Scholar 

  • Guo L, Riding R (1994) Origin and diagenesis of Quaternary travertine shrub fabrics, Rapolano Terme, central Italy. Sedimentology 41: 499–520

    Google Scholar 

  • Harwood DM, Nikolaev VA (1995) Cretaceous Diatoms: Morphology, taxonomy, biostratigraphy, In: Biome CD et al. (convenors) Siliceous microfossils. Paleontol Soc Short Courses Paleontol 8: 81–106

    Google Scholar 

  • Hein MK, Winsborough BM, Davis JS, Golubic S (1993) Extracellular structures produced by marine species of Mastogloia. Diatom Res 8: 73–88

    Article  Google Scholar 

  • Hein MK, Winsborough BM Diatoms of the Bahamas. Bibliotheca Diatomologica (in preparation)

    Google Scholar 

  • Heinzelmann C, Baumgartner B, Rehse C (1991) Algal films stabilize the river bed. German Res 2: 12–14

    Google Scholar 

  • Hines HB, Burlingame AL (1984) Chemical degradations of residual organic matter from laminated cyanobacterial mats from Solar Lake, Israel. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: stromatolites. Alan R Liss, New York, pp 391–410

    Google Scholar 

  • Hoagland KD, Rosowski JR, Gretz MR, Roemer SC (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry and physiology. J. Phycol 29: 537–566

    Article  Google Scholar 

  • Hustedt F (1938) Systematische und Ökologische Untersuchungen uber die Diatomeen-Flora von Java, bali und Sumatra. Arch Hydrobiol (Suppl Band) 15: 715–718

    Google Scholar 

  • John J (1990) The diatom flora of the microbial communities associated with stromatolites at Shark Bay, Indian Ocean, West Coast of Australia. In: Ricard M (ed) Ouvrage dédié à la Mémoire du Professeur Henry Germain (1903–1989). O Koeltz, Koenigstein, pp 97–110

    Google Scholar 

  • John J (1991) Parlibellus panduriformis sp. nov. (Bacillariophyta) from Shark Bay, Western Australia. Phycologia 30: 556–562

    Article  Google Scholar 

  • Kempe S, Emeis K (1985) Carbonate chemistry and the formation of Plitvice Lakes. In: Degans ET, Kempe S, Herrera R (eds) Transport of carbon and minerals in major world rivers, pt 3. Mitt Geol-Paläont Inst Univ Hamburg (SCOPE/UNEP Sonderbd) 58: 351–383

    Google Scholar 

  • Kempe S, Emeis K (1986) Travertine formation in the Plitvice Na- tional Park. Proc loth Int Speleol Congr Barcelona, pp 55–59

    Google Scholar 

  • Korte VL, Blinn DW (1983) Diatom colonization on artificial substrata in pool and riffle zones studied by light and scanning electron microscopy. J Phycol 19: 332–341

    Article  Google Scholar 

  • Love KM, Chafetz HS (1990) Diagenesis of laminated travertine crusts, Arbuckle Mountains, Oklahoma. J Sediment Petrol 58: 441–445

    Google Scholar 

  • Monty CL (1967) Distribution and structure of Recent stromatolitic algal mats, Eastern Andros Island, Bahamas. Ann Soc Géol Belg 90: 55–100

    Google Scholar 

  • Moore LS, Burne RV (1994) The modern thrombolites of Lake Clifton, Western Australia. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic stromatolites II. Kluwer Academic Publishers, Boston, pp 3–29

    Chapter  Google Scholar 

  • Neely JA (1990). Paleoecologia y Desarrollo Cultural de Hierve el Agua: Re-estudio de un Sitio Prehispanico en Oaxaca, Mexico. Consejo de Arqueologia Boletin 1989, no 1, Mexico, D.F., Instituto Nacional de Antropologia, pp 97–102

    Google Scholar 

  • Neely JA (1995) Paleoecologia, Desarrollo Cultural, y los Usos de Aguas en el Valle de Tehuacân, Puebla, Mexico. Un Reportaje al Consejo de Arqueologia del Instituto Nacional de Antropologia e Historia de Mexico. Mexico, D.F.

    Google Scholar 

  • Neely JA, Caran SC, Winsborough BM (1990) Irrigated agriculture at Hierve el Agua, Oaxaca, Mexico: In: Marcus J (ed) Debating Oaxaca archaeology. Anthropological Papers Museum of Anthropology, University of Michigan No 84, Ann Arbor, pp 115–189

    Google Scholar 

  • Neely JA, Caran SC, Winsborough BM, Sorensen FR, Valastro S Jr (1995) An early Holocene hand-dug water well in the Tehuacan Valley of Puebla, Mexico. Curr Res Pleistocene 12: 38–40

    Google Scholar 

  • Neumann AC, Gebelein CD, Scoffin TP (1970) The composition, structure and erodability of subtidal mats. Abaco, Bahamas. J Sediment Petrol 40: 274–297

    Google Scholar 

  • Oreshkina TV, Radionova EP (1990) The transition of Pacific Ocean diatom complexes at the Middle-Late Miocene Boundary and the palaeoceanographic implications. In: Simola H (ed) Proceedings of the loth International Diatom Symposium, Joensuu, Finland, Aug 28-Sept 2, 1988, Koeltz Scientific Books, Koenigstein, pp 205–212

    Google Scholar 

  • Paterson DM (1990) The influence of epipelic diatoms on the erodability of an artificial sediment. In: Simola H (ed) Proceedings of the tenth international diatom symposium, Joensuu, Finland. 1988, Koeltz Scientific Books, Koenigstein, pp 345–355

    Google Scholar 

  • Pedley, HM (1990) Classification and environmental models of cool freshwater tufas. Sediment Geol 68: 143–154

    Article  Google Scholar 

  • Pedley HM (1994) Prokaryote-microphyte biofilms and tufas: a sedimentological perspective. Kaupia. Darmstadter Beitr Naturges 4: 45–60

    Google Scholar 

  • Pentecost A (1982) A quantitative study of calcareous Tintenstriche algae from the Malham district, northern England. Br Phycol J 17: 443–456

    Article  Google Scholar 

  • Pentecost A (1988) Observations on growth rates and calcium carbonate deposition in the green alga Gongrosira. New Phytol 110: 249–253

    Article  Google Scholar 

  • Pentecost A (1990) The algal flora of travertine: an overview. In: Herman JS, Hubbard DA (eds) Travaertine-Marl: stream deposits in Virginia. Commonwealth of Virginia Dept. of Mines, Minerals and Energy, Division of Mineral Resources, Charlottesille, Virginia, pp 117–127

    Google Scholar 

  • Pentecost A (1995) Geochemistry of carbon dioxide in six travertine-depositing waters of Italy. J Hydro 167: 263–278

    Article  Google Scholar 

  • Pentecost A (1996) The Quaternary travertine deposits of Europe and Asia Minor. Quat Sci Rev 14: 1005–1028

    Article  Google Scholar 

  • Pentecost A, Tortora P (1989) Bagni di Tivoli, Lazio: A modern travertine-depositing site and its associated microorganisms. Boll Soc Geol It 108: 315–324

    Google Scholar 

  • Pentecost A, Viles H (1994) A review and reassessment of travertine classification. Geogr Phys Quat 48: 305–314

    Google Scholar 

  • Plenkovic A (1993) Periphyton settlements and their interaction with travertine formation in lotie biotopes in Plitvice Lakes. PhD Diss, University of Zagreb, Zagreb, Croatia, 199 pp

    Google Scholar 

  • Plenkovic A, Marcenko E, Srdoc D (1989) Periphyton growth on glass slides in aquatic ecosystem of Plitvice Lakes National Park. Periodicum Biol 91: 88–89

    Google Scholar 

  • Porter H (1861) The geology of Peterborough and its vicinity. T Chadwell, Peterborough, pp 24–28

    Google Scholar 

  • Riding R (1990) Calcareous algae and stromatolites, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Riding R (1994) Stromatolite survival and change: the significance of Shark Bay and Lee Stocking Island subtidal columns. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments, Bibliotheks and Informationssystem der Universitat, Oldenburg, pp 183–202

    Google Scholar 

  • Riding R, Awramik SM, Winsborough BM, Griffin KM, Dill RF (1991) Bahaman giant stromatolites: microbial composition of surface mats. Geol Mag 128: 227–234

    Article  Google Scholar 

  • Rosowski JR, Hoagland KD, Aloi JE (1986) Structural morphology of diatom-dominated stream biofllm communities under the impact of soil erosion. In: Evans LV, Hoagland KD (eds) Algal biofouling. Elsevier, Amsterdam, pp 247–299

    Chapter  Google Scholar 

  • Round FE (1981) The ecology of the algae. Cambridge University Press, London

    Google Scholar 

  • Round FE, Sims PA (1981) The distribution of diatom genera in marine and freshwater environments and some evolutionary considerations. Ross R (ed) Proceedings of the 6th Diatom Symposium, Budapest 1–5 Sept 1980, Otto Koeltz, Koenigstein, pp 301–320

    Google Scholar 

  • Stockner JG (1968) The ecology of a diatom community in a thermal stream. Br Phycol Bull 3: 501–514

    Article  Google Scholar 

  • Szulc J, Smyk B (1994) Bacterially controlled calcification of freshwater Schizothrix-stromatolites: an example from the Pieniny Mts, southern Poland. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic Stromatolites II, Kluwer Academic Publishers, Boston, pp 31–51

    Chapter  Google Scholar 

  • Vos PC, de Boer PL, Misdorp R (1988) Sediment stabilization by benthic diatoms in intertidal sandy shoals. In: de Boer PL et al. (eds) Tide-influenced sedimentary environments and fades, D Reidel, Dordrecht, pp 511–526

    Chapter  Google Scholar 

  • Wallner J (1935) Diatomeen als Kalkbildner. Hedwigia 75x37–141 Westall F, Rincé Y (1994) Biofilms, microbial mats and microbeparticle interactions: electron microscope observations from diatomaceous sediments. Sedimentology 41: 147–162

    Google Scholar 

  • Winsborough BM (1990) Some ecological aspects of modern freshwater stromatolites in lakes and streams of the Cuatro Ciénegas Basin, Coahuila, Mexico. Dissertation, The University of Texas at Austin

    Google Scholar 

  • Winsborough BM, Seeler J-S (1986) The relationship of diatom epiflora to the growth of limnic stromatoites and microbial mats. Proc 8th international diatom symposium 1984, Koeltz Scientific Books, Koenigstein, pp 395–407

    Google Scholar 

  • Winsborough BM, Golubic S (1987) The role of diatoms in stromatolite growth: two examples from modern freshwater settings. J Phycol 23: 195–201

    Article  Google Scholar 

  • Winsborough BM, Seeler J-S, Golubic S, Folk RL, Maguire BM (1994) Recent fresh-water lacustrine stromatolites, stromatolitic mats and oncoids from Northeastern Mexico. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic stromatolites II. Kluwer Academic Publishers, Boston, pp 71–100

    Chapter  Google Scholar 

  • Winsborough BM, Caran SC, Neely JA, Valastro S Jr (1996) Calcified microbial mats date prehistoric canals-radiocarbon assay of organic extracts from travertine. Geoarchaeology 11: 37–50

    Article  Google Scholar 

  • Woodbury RB, Neely JA (1972) Water Control Systems of the Tehuacân Valley. In: MacNeish RS (ed) Chronology and irrigation. the prehistory of the Tehuacdn Valley. TX.University of Texas Press, Austin, for the RS Peabody Foundation, 4: 81–153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winsborough, B.M. (2000). Diatoms and Benthic Microbial Carbonates. In: Riding, R.E., Awramik, S.M. (eds) Microbial Sediments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04036-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04036-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08275-7

  • Online ISBN: 978-3-662-04036-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics