Skip to main content
  • 331 Accesses

Abstract

The manipulation of soil microflora can involve changes in microbial diversity and microbial activities and it is carried out for practical purposes. The microbial diversity can be modified by the inoculation of beneficial microorganisms into soil or by agricultural management practices. Indigenous soil microorganisms show a remarkable range of catabolic and anabolic activities. In addition, they are able to degrade xenobiotics whose molecular structure does not resemble that of naturally occurring compounds. It is unknown how the development of cluster of genes encoding the enzymes involved in the degradation of these compounds occured. Another way of manipulating soil microflora is to stimulate or inhibit its activities and these approaches may involve changes in the composition of soil microflora due to both target and non-target effects. Enzymes immobilized on supports resembling soil colloids can be added to soil so as to increase the activity of microbial reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JA (1986) Nitrification and ammonification in acid forest litter and humus as affected by peptone and ammonium-N amendment. Soil Biol Biochem 18: 45–51

    Article  CAS  Google Scholar 

  • Akkermans ADL (1994) Application of bacteria in soils, problems and pitfalls. FEMS Microbiol Rev 15: 185–194

    Article  CAS  Google Scholar 

  • Alexander M (1977) Soil microbiology John Wiley, New-York

    Google Scholar 

  • Angers DA, Bissonnette N, Lègère A, Sanson N (1993) Microbial and biochemical changes induced by rotation and tillage in a soil under barley production. Can J Soil Sci 73: 39–50

    Article  Google Scholar 

  • Barik S, Munnecke DM (1982) Enzymatic hydrolysis of concentrated diazinon in soil. Bull Environ Contam Toxicol 29: 235–239

    Article  PubMed  CAS  Google Scholar 

  • Berry DF, Hagedorn C (1991) Soil and ground water transport of microorganisms. In: Ginsburg LR (ed) Assessing ecological risks of biotechnology. Butterworth-Heinemann, Stoneham, Massachusetts, pp 57–73

    Google Scholar 

  • Beuchamp EG, Hume DJ (1997) Agricultural soil manipulation: the use of bacteria, manuring and plowing. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 643–664

    Google Scholar 

  • Bollag JM, Liu SY (1990) Biological transformation processes of pesticides. In: Cheng HH (ed) Pesticides in the soil environment: processes, impacts, and modeling. Soil Science Society of America Book Ser 2. Soil Science Society of America, Madison, Wisconsin, pp 169–209

    Google Scholar 

  • Bremner JM, Chai HS (1989) Effects of phosphoroamides on ammonia volatilization and nitrite accumulation in soils treated with urea. Biol Fertil Soils 8: 227–230

    CAS  Google Scholar 

  • Brown ME, Jackson RM, Burlingham JK (1968) Effects of produced on tomato plants, Lycopersicum esculenturn by seed or root treatment with gibberellic acid and indol-3yl-acetic acid. J Exp Bot 19: 544–552

    Article  CAS  Google Scholar 

  • Bundy LG, Bremner JM (1973) Inhibition of nitrification in soils. Soil Sci Soc Am Proc 37: 396–398

    Article  CAS  Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14: 423–427

    Article  CAS  Google Scholar 

  • Burns RG (1987) Interactions of humic substances with microbes and enzymes in soil and possible implications for soil fertility. An Edafol Agrobiol 46: 1247–1259

    Google Scholar 

  • Burns RG (1995) Enumeration, survival, and beneficial activities of microorganisms introduced into soil. In: Huang PM, Berthelin J, Bollag JM, McGill WB, Page AL (eds) Environmental impact of soil component interactions. Lewis, Boca Raton, Florida, pp 145–164

    Google Scholar 

  • Burr TJ, Schroth MN, Suslaow T (1978) Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. Putida. Phytopathology 68: 1377–1383

    Article  Google Scholar 

  • Campbell NER, Aleem MIH (1965) The effect of 2-chloro-6-(trichloro-methyl) pyridine on the chemoautotrophic metabolism of nitrifying bacteria. I. Nitrite oxidation by N. Antonie. J Microbiol Serol 31: 124–136

    CAS  Google Scholar 

  • Chalk PM, Victoria RL, Muraoka T, Piccolo MC (1990) Effect of a nitrification inhibitor on immobilization and mineralization of soil and fertilizer nitrogen. Soil Biol Biochem 22: 533–538

    Article  CAS  Google Scholar 

  • Chander K, Goyal S, Mundra MC, Kapoor KK (1997) Organic matter, microbial biomass and enzyme activity of soils under different crop rotations in the tropics. Biol Fertil Soils 24: 306–310

    Article  CAS  Google Scholar 

  • Doran JW (1980) Soil microbial and biochemical changes associated with reduced tillage. Soil Sci Soc Am J 44: 765–774

    Article  CAS  Google Scholar 

  • Doran JW (1987) Microbial biomass and mineralizable nitrogen distributions in no-tillage and plowed soils. Biol Fertil Soils 5: 68–75

    Article  Google Scholar 

  • Drahos DJ, Hemming BC, McPherson S (1986) Tracking recombinant organisms in the environment: 13-galactosidase as a selectable non-antibiotic marker for fluorescent pseudomonads. Biotechnology 4: 439–444

    Article  CAS  Google Scholar 

  • Eaglesham ARJ (1989) Global importance of Rhizobium as an inoculant. In: Campbell R, Macdonald R (eds) Microbial inoculation of crop plants. Oxford University Press, Oxford, pp 29–48

    Google Scholar 

  • El Nawawy AS, Al-Daher R, Yateem A, Al-Awadhi N (1996) Bioremediation of oil contaminated soil in Kuwait II. Enhanced landfarming for bioremediation of oil-contaminated soil. In: Moo-Young M, Anderson WA, Chakrabarky AM (eds) Environmental biotechnology: principles and applications. Kluwer, Dordrecht, pp 249–258

    Google Scholar 

  • Falchini L, Sparvoli E, Tomaselli L (1996) Effect of Nostoc ( Cyanobacteria) inocu- lation on the structure and stability of clay soils. Biol Fertil Soils 23: 346–352

    Google Scholar 

  • Friello dA, Mylroie JR, Chakrabarty AM (1976) Use of genetically engineered multi-plasmid microorganisms for rapid degradation of fuel hydrocarbons. In: Sharpley JM, Kaplan A (eds) Proc 3rd Int Biodegradation Symp. Applied Science Publ, London, pp 205–214

    Google Scholar 

  • Grego S, D’Annibale A, Luna M, Badalucco L, Nannipieri P (1990) Multiple forms of synthetic pronase-phenolic copolymers. Soil Biol Biochem 22: 721–724

    Article  CAS  Google Scholar 

  • Gu KF, Chu TMS (1988) Immobilization of a multienzymic system and dextranNAD+ in semipermeable microcapsules for use in a bioreactor to convert urea into L-glutamic acid. In: Moo-Young M (ed) Bioreactor immobilized enzymes and cells: fundamentals and applications. Elsevier, London, pp 59–62

    Google Scholar 

  • Hassink J, Oude Voshaar JH, Nijhuis EH, van Veen JA (1991) Dynamics of the microbial population of a reclaimed-polder soil under a conventional and reduced-input farming system. Soil Biol Biochem 23: 515–524

    Article  Google Scholar 

  • Hattori T, Hattori R (1976) The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microorganisms. CRC Crit Rev Microbiol 4: 423–461

    Article  PubMed  CAS  Google Scholar 

  • Hauser M, Haselwandter K (1990) Degradation of dicyandiamide by soil bacteria. Soil Biol Biochem 22: 113–114

    Article  CAS  Google Scholar 

  • Heijnen CE, van Veen JA (1991) A determination of protective microhabitats for bacteria introduced into soil. FEMS Microbiol Ecol 85: 73–80

    Article  Google Scholar 

  • Held P, Lang S, Tradler E, Klepel M, Drohne D, Hartbrich HJ, Rothe G, Scheler H, Grundmeier S, Trautman A (1976) Agent for reducing the loss of plant-available nitrogen in cultivated soil. East German Patent 122 177 (Chem Abstr 87:67315w).

    Google Scholar 

  • Honeycutt R, Ballantine L, LeBaron H, Paulson D, Seim V, Ganz C, Milad G (1984) Degradation of higher concentrations of a phosphorothoic ester by hydrolase. In: Krueger RF, Seiber N (eds) Treatment and disposal of pesticide wastes. ACS Symp Ser 259: 343–352

    Chapter  Google Scholar 

  • Hussain A, Vancura V (1970) Formation of biologically active substances by rhizosphere bacteria and their effect on plant growth. Folia Microbiol 11: 468

    Article  Google Scholar 

  • Jian H, Tso WW (1996) DNA recombination, plasmid dissemination, enzymatic “combustion” and cell immobilization: their potential effect on environmental biotechnology. In: Moo-Young M, Anderson WA, Chakrabarty AM (eds) Environmental biotechnology: principles and applications, Klumer, Dordrecht, pp 28–37

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Schroth MN (1980b) Pseudomonas inoculants to benefit plant production. In: ISI atlas of science. Institute for Scientific Information, Philadelphia 1988, pp 60–64

    Google Scholar 

  • Ladd JN, Forster RC, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Stotzky G, Bollag JM (eds) Soil biochemistry vol 9. Marcel Dekker, New York, pp 23–78

    Google Scholar 

  • Lambert B, Joos H (1989) Fundamental aspects of rhizobacterial plant growth promotion research. Tibetechnology 7: 2–15

    Google Scholar 

  • Landi L, Barraclough D, Badalucco L, Gelsomino A, Nannipieri P (1999) Lmethionine-suiphoximine affects N mineralization-immobilizatiom in soil. Soil Biol Biochem 31: 253–259

    Article  CAS  Google Scholar 

  • Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86: 1–49

    Article  Google Scholar 

  • Lynch JM (1983) Soil biotechnology. Blackwell, Oxford Lynch JM ( 1990 ) The rhizosphere. John Wiley, Chichester

    Google Scholar 

  • Lupwayl NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 13: 1733–1741

    Article  Google Scholar 

  • Marshall K (1975) Clay mineralogy in relation to survival of soil bacteria. Annu Rev Phytophatol 13: 157–373

    Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraus JP, Defago G (1994) Induction of systemic resistance of tobacco necrosis virus by the root colonizing Pseudomonas fluorescens strains CHAO: influence of the gacA gene and of pyoverdine production. Phytophatology 84: 139–146

    Article  CAS  Google Scholar 

  • Metting B (1991) Biological surface features of semiarid lands and deserts. In: Skujins J (ed) Semiarid lands and deserts: Soil resources and reclamation. Marcel Dekker, New York, pp 257–293

    Google Scholar 

  • McCarty GW, Bremner JM (1989) Formation of phosphoryl triamide by decomposition of thiophosphoryl triamide in soil. Biol Fertil Soils 8: 290–292

    CAS  Google Scholar 

  • McGill WB, Rowell MJ, Westlake DWS (1981) Biochemistry, ecology, and microbiology of petroleum components in soil. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, pp 229–296

    Google Scholar 

  • McLaren AD (1977) The seven questions of Selman A. Waksman. Soil Biol Biochem 9: 375–376

    Article  Google Scholar 

  • McLaren AD, Peterson GH (1967) Introduction to the biochemistry of terrestrial soils. In: McLaren AD, Peterson GH (eds) Soil biochemistry vol 1. Marcel Dekker, New York, pp 1–13

    Google Scholar 

  • Mulvaney RI, Bremner JM (1981) Control of urea transformations in soil. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, pp 153–196

    Google Scholar 

  • Nannipieri P (1994) The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota. Management in sustainable farming systems. CSIRO, East Melbourne, Victoria, Australia, pp 144–155

    Google Scholar 

  • Nannipieri P, Bollag JM (1991) Use of enzymes to detoxify pesticide-polluted soils and waters. J Environ Qual 20: 510–517

    Article  CAS  Google Scholar 

  • Nannipieri P, Muccini L, Ciardi C (1983) Microbial biomass and enzyme activity: production and persistence. Soil Biol Biochem 15: 679–685

    Article  CAS  Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B (1990) Ecological significance of the biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry vol 6. Marcel Dekker, New York, pp 293–355

    Google Scholar 

  • Nannipieri P, Badalucco L, Landi L (1994) Holistic approach to the study of populations, nutrient pools and fluxes: limits and future research needs. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. John Wiley and Sons, New York, pp 231–238

    Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76: 319–337

    Article  CAS  Google Scholar 

  • Powlson DS, Barraclough D (1993) Mineralization and assimilation in soil-plant systems. In: Knowles R (ed) Nitrogen isotope techniques. Academic Press, San Diego, pp 209–242

    Google Scholar 

  • Prosser JI (1990) Autotrophic nitrification in bacteria. In: Rose AH, Tempest DW (eds) Advances in microbial physiology. Academic Press, London, pp 125–181

    Chapter  Google Scholar 

  • Reitzer LJ, Magasanik B (1987) Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine and D-alanine. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium, cellular and molecular biology. American Society of Microbiology, Washington, DC, pp 302–320

    Google Scholar 

  • Rojo F, Pieper D, Engesser KH, Knackmuss HJ, Timmis KN (1987) Assemblage of ortho cleavage routes for simultaneous degradation of chloro-and methylaromatics. Science 238: 1395–1398

    Article  PubMed  CAS  Google Scholar 

  • Sarkar JM, Burns RG (1984) Synthesis and properties of 0-D-glucosidase-phenolic copolymers as analogues of soil humic-enzyme complexes. Soil Biol Biochem 16: 619–625

    Article  CAS  Google Scholar 

  • Stotzky G (1986) Influence of soil mineral colloids on metabolic processes, growth, adhesion and ecology of microbes and viruses. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Special Pub 17. Soil Science Society of America, Madison, Wisconsin, pp 305–428

    Google Scholar 

  • Thompson RJ, Burns RG (1989) Control for Phytium ultimum with antagonistic fungal metabolites incorporated into sugar beet seed pellets. Soil Biol Biochem 21: 745–748

    Article  CAS  Google Scholar 

  • Timmis KN, Lehrbach PR, Harayama S, Don RH, Mermod N, Bas S, Leppik R, Weightman AJ, Reinecke W, Knackmuss HJ (1985) Analysis and manipulation of plasmid-encoded pathways for the catabolism of aromatic compounds by soil bacteria. In: Helinski DR, Cohen SN, Clewell DB, Jackson DA, Hollaender A (eds) Plasmid in biology. Basic Life Sciences, vol 30. Plenium Press, New York, pp 719–739

    Google Scholar 

  • Torsvik V, Goksoyr J, Daee FL (1990) High diversity in DNA of soil bacteria. Applied and Environ Microbiol 56: 782–787

    CAS  Google Scholar 

  • van Elsas JD, Heijnen CE (1990) Methods for the introduction of bacteria in soil: a review. Biol Fertil Soils 10: 127–133

    Google Scholar 

  • van Elsas JD, Heijnen CE, van Veen JA (1991) The fate of introduced genetically engineered microorganisms in soil, in microcosms and the field impact of soil textural aspects. In: MacKenzie DR, Henry SC (eds) Biological monitoring of genetically engineered plants and microbes. Agricultural Research Institute, Bethesda, Maryland, pp 67–79

    Google Scholar 

  • van Overbeek LS, van Elsas JD (1997) Adaptation of bacteria to soil conditions: applications of molecular physiology in soil microbiology. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 441–477

    Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms into soil. Microbiol Mol Biol Rev 61: 121–135

    PubMed  Google Scholar 

  • Vargas R, Hattori T (1986) Protozoan predation of bacteria cells in soil aggregates. FEMS Microb Ecol 38: 233–242

    Article  Google Scholar 

  • Waksman SA (1927) Principles of soil microbiology. Williams Wilkins, Baltimore, USA

    Google Scholar 

  • Wang X, Yu X, Bartha R (1990) Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environ Sci Technol 24: 1086–1089

    Article  CAS  Google Scholar 

  • Weller D, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. VCH Weinheim, New-York, pp 1–18

    Chapter  Google Scholar 

  • Williams PA (1981) Catabolic plasmids. Trends Biochem Sci 6: 23–60

    Article  CAS  Google Scholar 

  • Wilson M, Lindow SE (1993) Release of recombinant microorganisms. Ann Rev Microbiol 47: 913–944

    Article  CAS  Google Scholar 

  • Zelles L, Bai QY, Beck T, Besse F (1992) Signature fatty acids in phospholipis and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils. Soil Biol Biochem 24: 317–323

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nannipieri, P., Falchini, L., Landi, L., Pietramellara, G. (2000). Management of Soil Microbiota. In: Balázs, E., et al. Biological Resource Management Connecting Science and Policy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04033-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04033-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04035-5

  • Online ISBN: 978-3-662-04033-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics