Skip to main content

Sources and Characteristics of Remote Sensing Image Data

  • Chapter
Remote Sensing Digital Image Analysis

Abstract

Remote sensing image data of the earth’s surface acquired from either aircraft or spacecraft platforms is readily available in digital format; spatially the data is composed of discrete picture elements, or pixels, and radiometrically it is quantised into discrete brightness levels. Even data that is not recorded in digital form initially can be converted into discrete data by use of digitising equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 1

  • http://www.wmo.ch

  • http://www.ncdc.noaa.gov

  • http://www.eosat.com

  • http://www.orbimage.com

  • http://hdsn.eoc.nasda.go.jp

  • http://www.spotimage.com.fir

  • http://www.rsi.ca

  • http://www.southport.jpl.nasa.gov

  • http://www.techexpo.com/WWW/opto-knowledge/

  • M.T. Chahine, 1983: Interaction Mechanisms within the Atmosphere. In Manual of Remote Sensing, R.N. Colwell (Ed). 2e. American Society of Photogrammetry, Falls Church, Va.

    Google Scholar 

  • Y. T. Chien, 1980: Hierarchical Data Structures for Picture Storage, Retrieval and Classification. In Pictorial Informations Systems, S.K. Chang and K.S. Fu (Eds.), Springer-Verlag, Berlin.

    Google Scholar 

  • C. Elachi (Chairman), 1983: Spaceborne Imaging Radar Symposium. Jet Propulsion Laboratory, January 17–20. JPL Publication 83-11.

    Google Scholar 

  • C. Elachi, T. Bicknell, R.L. Jordan and C. Wu, 1982: Spaceborne Synthetic Aperture Imaging Radars. Applications, Techniques and Technology. Proc. IEEE, 70, 1174–1209.

    Article  Google Scholar 

  • C. Elachi, 1988: Spaceborne Radar Remote Sensing: Applications and Techniques. N. Y, IEEE.

    Google Scholar 

  • B.C. Forster, 1985: Mapping Potential of Future Spaceborne Remote Sensing Systems. Institution of Surveyors (Australia) Annual Congress, Alice Springs.

    Google Scholar 

  • A.F.H. Goetz, G. Vane, T.E. Solomon and B.N. Rock, 1985: Imaging Spectrometry for Earth Remote Sensing, Science, 228, 1147–1153.

    Article  Google Scholar 

  • R.M. Hoffer, 1978: Biological and Physical Considerations in Applying Computer-Aided Analysis Techniques to Remote Sensor Data. In P.H. Swain and S.M. Davis, Eds., Remote Sensing: The Quantitative Approach, N. Y., McGraw-Hill.

    Google Scholar 

  • R.L. Jordan, B.L. Huneycutt and M. Werner, 1995: The SIR-C/X-SAR Synthetic Aperture Radar System. IEEE Trans Geoscience and Remote Sensing, 33, 829–839.

    Article  Google Scholar 

  • A.B. Kahle and A.F.H. Goetz, 1983: Mineralogic Information from a New Airborne Thermal Infrared Multispectral Scanner, Science, 222, 24–27.

    Article  Google Scholar 

  • D.L. Light, 1990: Characteristics of Remote Sensors for Mapping and Earth Science Applications. Photogrammetric Engineering and Remote Sensing, 56, 1613–1623.

    Google Scholar 

  • NASA, 1984: The SIR-B Science Investigations Plan, Jet Propulsion Laboratory Publication 84-3.

    Google Scholar 

  • R.K. Raney, A.P. Luscombe, E.J. Lanham and S. Ahmed, 1991: Radarsat. Proc. IEEE, 79, 839–849.

    Article  Google Scholar 

  • A. Rosenfeld, 1982: Quadtrees and Pyramids: Hierarchical Representation of Images, Report TR-1171, Computer Vision Laboratory, University of Maryland.

    Google Scholar 

  • J. Star and J.E. Estes, 1990: Geographic Information Systems, An Introduction. N.J. Prentice-Hall.

    Google Scholar 

  • E.R. Stofan, D.L. Evans, C. Schmullius, B. Holt, J.J. Plaut, J. van Zyl, S.D. Wall and J. Way, 1995: Overview of Results of Spaceborne Imaging Radar-C, X-Band Synthetic Aperture Radar (SIR-C/X-SAR). IEEE Trans Geoscience and Remote Sensing, 33, 817–828.

    Article  Google Scholar 

  • K. Tomiyasu, 1978: Tutorial Review of Synthetic-Aperture Radar (SAR) with Applications to Imaging of the Ocean Surface. Proc. IEEE, 66, 563–583.

    Article  Google Scholar 

  • R. Welch, 1982: Image Quality Requirements for Mapping from Satellite Data. Proc. Int. Soc. Photogrammetry and Remote Sensing, Commission 1. Primary Data Acquisition, Canberra.

    Google Scholar 

  • F.T Ulaby, R.K. Moore and A. K. Fung, 1981, 1982, 1985: Microwave Remote Sensing, Active and Passive. Vols 1, 2, 3 Reading Mass. Addison-Wesley.

    Google Scholar 

  • G. Vane and A.F.H. Goetz, 1988: Terrestrial Imaging Spectroscopy. Remote Sensing of Environment, 24, 1–29.

    Article  Google Scholar 

  • C. E. Woodcock and A. H. Strahler, 1987: The Factor of Scale in Remote Sensing. Remote Sensing of Environment, 21, 311–332.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richards, J.A., Jia, X. (1999). Sources and Characteristics of Remote Sensing Image Data. In: Remote Sensing Digital Image Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03978-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03978-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03980-9

  • Online ISBN: 978-3-662-03978-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics