Skip to main content

Attitude and Orbit Control System

  • Chapter
Space Stations

Abstract

The next subsystem typical of a space station, the Attitude and Orbit Control System (AOCS), will be discussed in this chapter. On one hand, the orbit control and orientation of a large orbiting structure is a particular challenge for engineers, but on the other hand, special concepts must be developed for attitude and orbit control because of utilization aspects, logistical requirements and relatively low orbit altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anselmo, J. C: Shelved for Years, Arc Jets Reappear. Aviation Week and Space Technology, May 20, 1996.

    Google Scholar 

  2. Bacarat, W.A.; Butner, C.L.: Tethers in Space Handbook, NASA contract NASW-3921, 1986.

    Google Scholar 

  3. Belew, L.F.; Stuhlinger, E.: Skylab — A Guidebook. NASA EP-107, 1973.

    Google Scholar 

  4. Bertrand, R.; Glocker, B.; Messerschmid, E.: Synergetic Orbit Control of the ISS using Waste Pyrolysis. Proceedings of the First Symposium on the Utilisation of the International Space Station, ESA SP-385, Darmstadt, September 30-October 2, 1996.

    Google Scholar 

  5. Burkhardt, J.; Zimmermann, F.; Schöttle, U.: Consultancy on Space Station Utilization: Analysis of a Reentry Capsule for Space Station Sample Retrieval. ESTEC Purchase Order No. 152667,1RS 96-P-2, Space Systems Institute, University of Stuttgart, 1996.

    Google Scholar 

  6. Caesar, T., Nentwig, G., Peters, K., Glocker, B., Wilhelmi, H., Messerschmid, E.: Experimental and Theoretical Investigation on the Mixing of Reacting Liquids in a Thermal Arc-Heated Steam Plasma. 5th International Conference on Thermal Plasma Processes, St. Petersburg, Russia, July 13–18,1998.

    Google Scholar 

  7. Statusbericht Internationale Raumstation, Programm und Technik. Deutsche Agentur für Raumfahrtangelegenheiten, Bonn, Germany, March 08, 1995.

    Google Scholar 

  8. Utilization of the International Space Station. ESA Directorate of Manned Spaceflight and Microgravity, Doc. No. MSM-4785, 22 June 1995.

    Google Scholar 

  9. Foley, T.M.: Engineering the Space Station. Aerospace America, ISSN 0740–722X, October 1996.

    Google Scholar 

  10. Glocker, B., Nentwig, G., Hug, S., Messerschmid, E.: A Test Plant for Treating Halogenated Hydrocarbons Using Steam Plasma Technology. 5th International Conference on Thermal Plasma Processes, St. Petersburg, Russia, July 13–18,1998.

    Google Scholar 

  11. Hans, M.: Verwendung von Magnetspulen zur Lageregelung von Raumstationen. Thesis, IRS-95-S1, Space Systems Institute, University of Stuttgart, 1991.

    Google Scholar 

  12. Hitachi Ltd.: Hitachi Magnetic Torquer s. Product Information, Tokyo, Japan.

    Google Scholar 

  13. Technical Data Book, http://issa-www.jsc.nasa.gov/ss/techdata.html, based on SSP 50037–19A, July 19, 1995.

    Google Scholar 

  14. Jones, R.E.; Meng, P.R. et al.: Space Station Propulsion System Technology, Acta Astronautica 9/87, 1987.

    Google Scholar 

  15. Laible, T.: Synergetische Bahnregelungsstrategien für die ‘International Space Station’, 1RS 95-S-16, Space Systems Institute, University of Stuttgart, 1995.

    Google Scholar 

  16. Marcos, F.A. et al.: Neutral Density Models for Aerospace Applications, in: AIAA Special Report, Contemporary Models of the Orbital Environment, AIAA SP-069–1994, America Institute of Aeronautics and Astronautics, Washington, DC, 1994.

    Google Scholar 

  17. Messerschmid, E., Zube, D., Meinzer, K., Kurtz, H.L.: Arcjet Development for Amateur Radio Satellite, Journal of Spacecraft and Rockets, Vol. 33, No. l,Jan.-Feb. 1996.

    Google Scholar 

  18. Pohlemann, F.: Systemanalyse eines elektrodynamischen Tetherantriebs für Anwendungen im niederen Erdorbit. Dissertation, Space Systems Institute, University of Stuttgart, 1992.

    Google Scholar 

  19. Space Station Program Natural Environment Definition for Design. SSP 30425, NASA Space Station Program Office, Johnson Space Center, Houston, TX, 1994.

    Google Scholar 

  20. System Specification for the International Space Station. SSP41000D, NASA Space Station Program Office, Johnson Space Center, Houston, TX, Nov. 1995.

    Google Scholar 

  21. Wertz, J.E. (Ed.): Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, Dordrecht, 1978.

    Google Scholar 

  22. Woodcock, G.R.: Space Stations and Platforms, Orbit Book Company, Malabar, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Messerschmid, E., Bertrand, R. (1999). Attitude and Orbit Control System. In: Space Stations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03974-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03974-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08479-9

  • Online ISBN: 978-3-662-03974-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics