Skip to main content

Computational Approach to the Fusion Reactor Materials

  • Chapter
Computational Materials Design

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 34))

Abstract

Collision cascade processes using the binary collision approximation and molecular dynamics are introduced. The combination of these approaches makes it possible to simulate the generation of cascade by neutrons with a wide energy. Various models of the irradiation creep mechanism as a macroscopic phenomena of radiation damage were proposed and the simulation was supported by the experimental result. Based on the radiation deformation mechanism, radiation induced stress relaxation in a fusion reactor was predicted. Simulation calculation of neutron spectrum, displacement of atoms, transmutation, and induced activity for candidate structural materials were made. Transmutation of some elements like W and V are influenced by the neutron spectrum. Simulation methodology for selecting optimum materials from the viewpoints of nuclear properties is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Beeler, D.G. Besco: J. Appl. Phys. 34, 2873 (1963).

    Article  ADS  Google Scholar 

  2. J.R. Beeler: J. Appl. Phys. 35, 2226 (1964).

    Article  ADS  Google Scholar 

  3. M.T. Robinson, I.M. Torrens: Phys. Rev. B 9, 5008 (1974).

    Article  ADS  Google Scholar 

  4. J.B. Gibson, A.N. Goland, M. Milgram, G.H. Vineyard: Phys. Rev. 120, 1229 (1960).

    Article  ADS  Google Scholar 

  5. G.H. Vineyard: Discuss. Farad. Soc. 31, 7 (1961).

    Article  Google Scholar 

  6. M.S. Daw, M.I. Baskes: Phys. Rev. B 29, 6443 (1984).

    Article  ADS  Google Scholar 

  7. M.W. Finnis, J.E. Sinclair: Philos. Mag. A 50, 45 (1984).

    Article  ADS  Google Scholar 

  8. T. Diaz de la Rubia, M. W. Guinan: J. Nucl. Mater. 174, 151 (1990).

    Article  ADS  Google Scholar 

  9. K. Morishita, T. Diaz de la Rubia: Mater. Res. Soc. Symp. Proc. 396, 39 (1996).

    Article  Google Scholar 

  10. M. Jaraiz, G.H. Gilmer, D.M. Stock, T. Diaz de la Rubia: Nucl. Instrum. Methods 102, 180 (1995).

    Google Scholar 

  11. J.A. Hudson et al.: J. Nucl. Mater. 65, 279 (1977).

    Article  ADS  Google Scholar 

  12. J.R. Matthews, M.W. Finnis: J. Nucl. Mater. 159, 257 (1988).

    Article  ADS  Google Scholar 

  13. J. Nagakawa et al.: J. Nucl. Mater. 179–181, 986 (1991).

    Article  Google Scholar 

  14. C. Dimitrov, O. Dimitrov: J. Phys. F 14, 793 (1984).

    Article  ADS  Google Scholar 

  15. W.G. Wolfer, M. Ashkin: J. Appl. Phys. 46, 547 (1975)

    Article  ADS  Google Scholar 

  16. W.G. Wolfer, M. Ashkin: J. Appl. Phys. 46, 4108 (1975).

    Article  ADS  Google Scholar 

  17. P.T. Heald, M.V. Speight: Philos. Mag. 29, 1075 (1974).

    Article  ADS  Google Scholar 

  18. A.D. Brailsford, R. Bullough: Philos. Mag. 27, 49 (1973).

    Article  ADS  Google Scholar 

  19. R.V. Hesketh: Philos. Mag. 7, 1417 (1962).

    Article  ADS  Google Scholar 

  20. R. Bullough, J.R. Willis: Philos. Mag. 31, 855 (1975).

    Article  ADS  Google Scholar 

  21. L.K. Mansur: Philos. Mag. A 39, 497 (1979).

    Article  ADS  Google Scholar 

  22. M.L. Grossbeck, L.K. Mansur: J. Nucl. Mater. 179–181, 130 (1991).

    Article  Google Scholar 

  23. J. Nagakawa: J. Nucl. Mater. 212–215, 541 (1994).

    Article  Google Scholar 

  24. J. Nagakawa: J. Nucl. Mater. 225, 1 (1995).

    Article  ADS  Google Scholar 

  25. P.J. Maziasz: J. Nucl. Mater. 191–194, 701 (1992).

    Article  Google Scholar 

  26. J.H. Gittus: Philos. Mag. 25, 345 (1972).

    Article  ADS  Google Scholar 

  27. ITER Conceptual Design Report (IAEA, Vienna, 1991), p.165.

    Google Scholar 

  28. L.R. Greenwood, F.A. Garner: J. Nucl. Mater. 212–215, 634 (1994).

    Google Scholar 

  29. C.B.A. Forty, G.J. Butterworth, J.-Ch. Sublet: J. Nucl. Mater. 212–215, 640 (1994).

    Article  Google Scholar 

  30. K. Maki, H. Takatsu, T. Kuroda, Y. Seki, M. Kajiura, N. Tachikawa, R. Saito, H. Kawasaki: Shielding Design of Reactor Core Region in Fusion Experimental Reactor, JAERI-M 91–017, (1991).

    Google Scholar 

  31. T. Noda, M. Fujita: J.Nucl. Mater. 233–237, 1491 (1996).

    Article  Google Scholar 

  32. S. Sharafat, C.P.C. Wong, E.E. Reis: Fusion Technol. 19, 901 (1991).

    Google Scholar 

  33. K. Maki, K. Kosako, Y. Seki, H. Kawasaki: Nuclear Group Constant Set FUSION-J3 for Fusion Reactor Nuclear Calculations Based on JENDL-3, JAERI-M 91–072, (1991).

    Google Scholar 

  34. W.W. Engle: “A user’s manual for ANISN, A one-dimensional discrete ordinate transport code with anisotropic scattering”, K-1693, (1976).

    Google Scholar 

  35. W.A. Rhoades, F.R. Mynatt: “The DOT-III Two Dimensional Discrete Ordinates Transport Code”, ORNL-TM-4280, (1973).

    Google Scholar 

  36. E.A. Straker: “The MORSE Code — A Multigroup Neutron and Gamma ray Monte Carlo Transport Code”, ORNL-TM-4585, (1970).

    Book  Google Scholar 

  37. Y. Gohar, M.A. Abdou: DLC-60, ORNL, (1978).

    Google Scholar 

  38. M.T. Robinson: “Energy Dependence of Neutron Irradiation Damage in Solids”, Proc. BNES Nuclear Fusion Reactor, Conf., British Nuclear Energy Society, London, (1970), p.364.

    Google Scholar 

  39. F.M. Mann: Fusion Technol. 6, 273 (1984).

    Google Scholar 

  40. G.J. Butterworth, L. Giancarli: J. Nucl. Mater. 155–157, 575 (1988).

    Article  Google Scholar 

  41. S. Fetter, E.T. Cheng, F.M. Mann: Fusion Eng. Des. 13, 239 (1990).

    Article  Google Scholar 

  42. P. Rocco, M. Zucchetti: Fusion Eng. Des. 15, 235 (1992).

    Article  Google Scholar 

  43. C.B.A. Forty, R.A. Forrest, D.J. Compton, C. Rayner: “Handbook of Fusion Activation Data”, AEA FUS 189, (1993).

    Google Scholar 

  44. D. Murphy, G.J. Butterworth: J. Nucl. Mater. 191–194, 1444 (1992).

    Article  Google Scholar 

  45. N. Yamanouchi et al.: J. Nucl. Mater. 191–194, 822 (1992).

    Article  Google Scholar 

  46. T. Noda: J. Nucl. Mater. 233–237, 1475 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noda, T., Nagakawa, J. (1999). Computational Approach to the Fusion Reactor Materials. In: Saito, T. (eds) Computational Materials Design. Springer Series in Materials Science, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03923-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03923-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08404-1

  • Online ISBN: 978-3-662-03923-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics