Skip to main content

Numerical Study of Glacial and Meltwater Global Ocean Thermohaline Conveyor

  • Conference paper
Computerized Modeling of Sedimentary Systems

Abstract

The ocean thermohaline circulation is often referred to as a global conveyor (Gordon 1986; Broecker and Denton 1989; Broecker 1991; review in Gordon et al. 1992). It is common knowledge that the global ocean thermohaline circulation is strongly controlled by the production of the North Atlantic Deep Water (NADW). Warm and salty subtropical water is carried to the high latitudes in the North Atlantic (NA) by the North Atlantic Current. It is cooled there and descends to set forth the deep ocean current system which is believed to be a global feature, a conveyor. Since the conveyor is mainly driven by latitudinal density gradients, which in high latitudes are controlled primarily by salinity, the density-driven conveyor is also referred to as the global salinity conveyor belt (Broecker 1991). The intriguing part of the problem is that the driving mechanism of change is thought to be very localized, with the key area of convection in the northern NA being surprisingly small with respect to the global ocean volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bard, E., F. Rostek, and C. Sonzogni, Interhemispheric synchrony of the last déglaciation inferred from alkenone palaeothermometry, Nature, 385, 707–710 1997.

    Article  Google Scholar 

  • Beck, J. W., J. Récy, F. Taylor, R. L. Edwards, and G. Cabioch, Abrrupt changes in early Holocene tropical sea-surface temperature derived from coral records, Nature, 385, 705–707 1997.

    Article  Google Scholar 

  • Beveridge, N. A. S., H. Elderfield, and N. J. Shackleton, Deep thermohaline circulation in the low-latitude Atlantic during the last glacial, Paleoceanography, 10, 643–660 1995.

    Article  Google Scholar 

  • Bitzer, K., and R. Pflug, DEPOD: A three-dimensional model for simulating clastic sedimentation and isostatic compensation in sedimentary basin, in Quantitative Dynamics Stratigraphy, edited by T. A. Cross, pp. 335–348, Prentice Hall, New York 1990.

    Google Scholar 

  • Bohrmann, G., R. Henrich, and J. Thiede, Miocene to Quaternary paleoceanography in the northern North Atlantic: Variability in carbonate and biogenic opal accumulation, in Ge- ological History of the Polar Oceans: Arctic Versus Antarctic, edited by U. Bleil and J. Thiede, pp. 647–675, Kluwer Acad., Norwell, Mass. 1990.

    Chapter  Google Scholar 

  • Bond, G. C., Climate and conveyor, Nature, 377, 383–384 1995.

    Article  Google Scholar 

  • Bond, G. et al., Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period, Nature, 360, 245–249 1992.

    Article  Google Scholar 

  • Boning, C. W., and M. D. Cox, Particle dispersion and mixing of conservative properties in an eddy-resolving model, J. Phys. Oceanogr., 18, 320–338 1988.

    Article  Google Scholar 

  • Boning, C. W., R. Doscher, and R. G. Budich, Seasonal transport in the western North Atlantic: Experiments with an eddy-resolving model, J. Phys. Oceanogr., 21, 1271–1289 1991.

    Article  Google Scholar 

  • Boyle, E., Deep water distillation, Nature, 379, 679–680 1996.

    Article  Google Scholar 

  • Boyle, E. A., and L. D. Keigwin, North Atlantic thermohaline circulation during the past 20, 000 years linked to high-latitude surface temperature, Nature, 330, 35–40 1987.

    Article  Google Scholar 

  • Boyle, E., and A. Weaver, Conveying past climates, Nature, 372, 41–42 1994.

    Article  Google Scholar 

  • Broecker, W., The great ocean conveyor, Oceanography, 4, 79–89 1991.

    Article  Google Scholar 

  • Broecker, W. S., and G. H. Denton, The role of ocean atmosphere reorganizations in glacial cycles, Geochim. Cosmochim. Acta, 53, 2465–2501 1989.

    Article  Google Scholar 

  • Bryan, F., High-latitude salinity effects and interhemispheric thermohaline circulations, Science, 323, 301–304 1986.

    Google Scholar 

  • Bryan, F., Parameter sensitivity of primitive equation ocean general circulation models, J. Phys. Oceanogr., 17, 970–985 1987.

    Article  Google Scholar 

  • Bryan, F., and W. Holland, A high resolution simulation of the wind- and themohaline-driv-en circulation in the North Atlantic Ocean, in Parameterization of Small-Scale Processes, edited by P. Müller and D. Henderson, pp. 99–115, Hawaii Inst, of Geophys., Honolulu 1989.

    Google Scholar 

  • Bryan, K., A numerical method for the study of the circulation of the world ocean, J. Corn-put. Phys., 4, 347–376 1969.

    Article  Google Scholar 

  • Climate: Long-Range Investigation Mapping and Prediction (CLIMAP) Project Members, Seasonal reconstructions of the Earth’s surface at the last glacial maximum, Map and Chart Ser. MC-36, pp. 1–18, Geol. Soc. of Am., Boulder, Colo. 1981.

    Google Scholar 

  • Colin de Verdière, A., Buoyancy driven planetary flows, J. Mar. Res., 46, 215–265 1988.

    Article  Google Scholar 

  • Cox, M. D., A primitive equation, 3-dimensionai model of the ocean, Tech. Rep. No. 1, 250 pp., Ocean Group, Geophys. Fluid Dyn. Lab., Princeton, Univ., Princeton, N.J. 1984.

    Google Scholar 

  • Cox, M., An idealized model of the world ocean, I, The global-scale water masses, J. Phys. Oceanogr. 19, 1730–1752 1989.

    Article  Google Scholar 

  • Cox, M., and K. Bryan, A numerical model of the ventilated thermocline, J. Phys. Oceanogr., 14, 674–687 1984.

    Article  Google Scholar 

  • Cremer, M., J.-C. Faugeres, F. E. Grousset, and E. Gonthier, Late Quaternary sediment flux on sedimentary drifts in the northeast Atlantic, Sediment. Geol., 82, 89–101 1993.

    Article  Google Scholar 

  • Dowling, L. M., and I. N. McCave, Sedimentation on the Feni drift and late Glacial bottom water production in the northern Rockall Trough, Sediment. Geol. 1993, 79–87 1993.

    Article  Google Scholar 

  • Drijfhout, S. S., E. Maier-Reimer, and U. Mikolajewicz, Tracing the conveyor belt in the Hamburg large-scale geostrophic ocean general circulation model, J. Geophys. Res., 101, 22, 563–22, 575 1996.

    Article  Google Scholar 

  • Duplessy, J.-C., and N. J. Shackleton, Response of global deep-water to Earth’s climate change 135, 000–107, 000 years ago, Nature, 316, 500–507 1985.

    Article  Google Scholar 

  • Duplessy, J.-C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel, Deep-water source variations during the last climatic cycle and their impact on the global deepwater circulation, Paleoceanography, 3, 343–360 1988.

    Article  Google Scholar 

  • Duplessy, J.-C., L. Labeyrie, A. Julliet-Lerclerc, J. Duprat, and M. Sarnthein, Surface salinity reconstruction of the North Atlantic Ocean during the last glacial maximum, Oceanol. Acta, 14, 311–324 1991.

    Google Scholar 

  • Einsele, G., Sedimentary Basins; Evolution, Facies, and Sediment Budget, pp. 628, Springer-Verlag, New York 1992.

    Book  Google Scholar 

  • England, M. H., Representing global-scale water masses in ocean general circulation models, J. Phys. Oceanogr., 23, 1523–1552 1993.

    Article  Google Scholar 

  • Fichefet, T., and S. Hovine, The glacial ocean: A study with a zonally averaged, three-basin ocean circulation model, in Ice in Climate System, NATO ASI Ser., Ser. I, 12, edited by W. R. Peltier, pp. 433–458, Springer-Verlag, New York 1993.

    Chapter  Google Scholar 

  • Fichefet, T., S. Hovine, and J.-C. Duplessy, A model study of the Atlantic thermohaline circulation during the last glacial maximum, Nature, 372, 252–255 1994.

    Article  Google Scholar 

  • Goldschmidt, P., Accumulation rates of coarse-grained terrigenous sediment in the Norwegian-Greenland Sea: Signals of continental glaciation, Mar. Geol., 128, 137–151 1995.

    Article  Google Scholar 

  • Goldschmidt, P. M., S. Pfirmann, I. Wollenburg, and R. Henrich, Origin of sediment pellets from the Arctic seafloor. Sea ice or icebergs?, Deep Sea Res., 372, 252–255 1992.

    Google Scholar 

  • Gordon, A., Interocean exchange of thermocline water, J. Geophys. Res., 91, 5037–5046 1986.

    Article  Google Scholar 

  • Gordon, A. L., S. E. Zebiak, and K. Bryan, Climate variability and the Atlantic Ocean, Eos Trans. AGU, 73, 161, 164–165 1992.

    Google Scholar 

  • Guilderson, T. P., R. G. Fairbanks, and Rubenstone, J. L., Tropical Temperature Variations Since 20, 000 Years Ago: Modulating Interhemispheric Climate Change, Science, 263, 663–664 1994.

    Article  Google Scholar 

  • Hasselmann, K., An ocean model for climate variability studies, Prog, in Oceanogr., 11, 69–92 1982.

    Article  Google Scholar 

  • Haupt, B. J., Numerische Modellierung der Sedimentation im nördlichen Nordatlantik, Ber. 54, pp. 1–129, Sonderforschungsbereich 313, Univ. Kiel, Kiel, Germany 1995.

    Google Scholar 

  • Haupt, B. J., C. Schäfer-Neth, and K. Stattegger, Modeling sediment drifts: A coupled oceanic circulation-sedimentation model of the northern North Atlantic, Paleoceanography, 9, 897–916 1994.

    Article  Google Scholar 

  • Haupt, B. J., C. Schäfer-Neth, and K. Stattegger, Three-dimensional numerical modeling of late Quaternary paleoceanography and sedimentation in the northern North Atlantic, Geol. Rundsch., 84, 137–150 1995.

    Article  Google Scholar 

  • Honjo, S., Particle fluxes and modern sedimentation in the polar oceans, in Polar Oceanography, Part B, edited by W. O. Smith, pp. 687–739, Academic, San Diego, Calif. 1990.

    Google Scholar 

  • Hsü, K. J., Physical Principles of Sedimentology, pp. 231, Springer-Verlag, New York 1989.

    Google Scholar 

  • Keigwin, L. D., G. Jones, and S. J. Lehman, Deglacial meltwater discharge, North Atlantic deep circulation, and abrupt climate change, J. Geophys. Res., 96, 16811–16826 1991.

    Article  Google Scholar 

  • Kellogg, T. B., Paleoclimatology and paleo-oceanography of the Norwegian and Greenland Seas; Glacial-interglacial contrasts, Boreas, 9, 115–137 1980.

    Article  Google Scholar 

  • Killworth, P. D., Deep convection in the world ocean, Rev. Geophys., 21, 1–26 1983.

    Article  Google Scholar 

  • Kroopnick, P. M., The distribution of 13C and ΣCO2 in the world oceans, Deep Sea Res., 32, 57–84 1985.

    Article  Google Scholar 

  • Lautenschlager, M., and K. Herterich, Atmospheric response to ice age conditions — Climatology near the Earth’s surface, J. Geophys. Res., 95, 22, 547–22, 557 1990.

    Article  Google Scholar 

  • LeGrand, P., and K. Wunsch, Constraints from paleotracer data on the North Atlantic circulation during the last glacial maximum, Paleoceanography, 10, 1011–1045 1995.

    Article  Google Scholar 

  • Lehman, S. J., and L. D. Keigwin, Sudden changes in North Atlantic circulation during the last déglaciation, Nature, 356, 757–762 1992.

    Article  Google Scholar 

  • Levitus, S., Climatological atlas of the world ocean, NOAA Prof. Pap., 13, 173 pp., U.S. Govt. Print. Off., Washington, D.C. 1982.

    Google Scholar 

  • Levitus, S., and T. P. Boyer, World Ocean Atlas 1994, vol. 4, (Temperature; 117 pp.), NOAA Natl. Environ. Satell. Data and Inf. Ser., Washington, D.C. 1994.

    Google Scholar 

  • Levitus, S., R. Burgett, and T. P. Boyer, World Ocean Atlas 1994, vol.3, (Salinity; 99 pp.) NOAA Natl. Environ. Satell. Data and Inf. Ser., Washington, D.C. 1994.

    Google Scholar 

  • Lorenz, S., B. Grieger, P. Helbig, and K. Herterich, Investigating the sensivity of the atmospheric general circulation Model ECHAM 3 to paleoclimate boundary conditions, Geol. Rundsch., 85, 513–524 1996.

    Article  Google Scholar 

  • Luyten, J. R., J. Pedlosky, and H. Stommel, The ventilated thermocline, J. Phys. Oceanogr., 13, 292–309 1983.

    Article  Google Scholar 

  • Maier-Reimer, E., and U. Mikolajewicz, Experiments with an OGCM on the cause of the Younger Dryas, Rep. 39, 13 pp., Max-Plank-Inst, für MeteoroL, Hamburg, Germany 1989.

    Google Scholar 

  • Maier-Reimer, E., U. Mikolajewicz, and K. Hasselmann, On the sensitivity of the global ocean circulation to changes in the surface heat flux forcing, Rep. 68, 67 pp., Max-Plank-Inst. für MeteoroL, Hamburg, Germany 1991.

    Google Scholar 

  • Maier-Reimer, E., U. Mikolajewicz, and K. Hasselmann, Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing, J. Phys. Oceanogr., 23, 731–757 1993.

    Article  Google Scholar 

  • Manabe, S., and R. J. Stouffer, Two stable equilibria of a coupled ocean-atmospher model, J. Clim., 1, 841–866 1988.

    Article  Google Scholar 

  • Manabe, S., and R. J. Stouffer, Simulation of abrupt change induced by freshwater input to the North Atlantic Ocean, Nature, 378, 165–167 1995.

    Article  Google Scholar 

  • Marotzke, J., and J. Willebrand, Multiple equilibria of the global thermohaline circulation, J. Phys. Oceanogr., 21, 1372–1385 1991.

    Article  Google Scholar 

  • Maslin, M. A., N. J. Shackleton, and U. Pflaumann, Surface water temperature, salinity, and density changes in the northeast Atlantic during the last 45, 000 years: Heinrich events, deep water formation, and climatic rebounds, Paleoceanography, 10, 527–544 1995.

    Article  Google Scholar 

  • McCartney, M. S., Recirculating components to the deep boundary current of the nothern North Atlantic, Prog, in Oceanogr., 29, 283–383 1992.

    Article  Google Scholar 

  • McCave, I. N., and B. E. Tucholke, Deep current controlled seimentation in the western North Atlantic, in The Geology of North America, vol. M. The Western North Atlantic Region, edited by P. R. Vogt and B. E. Tucholke, pp. 451–468, Geol. Soc. of Am., Boulder, Colo. 1986.

    Google Scholar 

  • Michel, E., L. D. Labeyrie, J.-C. Duplessy, N. Gorfti, M. Labracherie, and J.-L. Turon, Could deep Subantarctic convection feed the world deep basins during the last glacial maximum?, Paleoceanography, 10, 927–942 1995.

    Article  Google Scholar 

  • Mikolajewicz, U., A meltwater induced collapse of the ‘conveyor belt’ themohaline circulation and its influence on the distribution of A14C and 8180 in the oceans, Rep. 189, 25 pp., Max-Plank-Inst. für Meteorologie, Hamburg, Germany 1996.

    Google Scholar 

  • Miller, M. C., L N. McCave, and P. D. Komar, Threshold of sedimentation under unidirectional currents, SedimentoL, 24, 507–528 1977.

    Article  Google Scholar 

  • Oppo, D. W., and S. J. Lehman, Mid-depth circulation of the subpolar north Atlantic during the last glacial maximum, Science, 259, 1148–1152 1993.

    Article  Google Scholar 

  • Oppo, D. W., M. E. Raymo, G. P. Lohmann, A. C. Mix, J. D. Wright, and W. L. Preli, A Ô13C record of Upper North Atlantic Deep Water during the past 2.6 million years, Paleocea-nogr., 10, 373–394 1995.

    Article  Google Scholar 

  • Pacanowski, R., K. Dixon, and A. Rosati, The GFDL modular ocean users guide, Tech. Rep. 2, Ocean Group, Geophys. Fluid Dyn. Lab., Princeton Univ., Princeton, N. Y. 1993.

    Google Scholar 

  • Pfirmann, S., M. A. Lange, I. Wollenburg, and P. Schlosser, Sea ice characteristics and the role of sediment inclusions in deep-sea deposition: Arctic — Antarctic comparisons, in Geological History of the Polar Oceans: Arctic Versus Antarctic, edited by U. Bleil and J. Thiede, pp. 187–211, Kluwer Acad., Norwell, Mass. 1990.

    Chapter  Google Scholar 

  • Puis, W., Numerical simulation of bedform mechanics. Mitteilungen des Inst, für Meeresk. Univ. Hamburg, Hamburg, Germany, 147 pp. 1981.

    Google Scholar 

  • Rahmstorf, S., Rapid climate transitions in a coupled ocean-atmosphere model, Nature, 372, 82–85 1994.

    Article  Google Scholar 

  • Rahmstorf, S., Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle, Nature, 378, 145–149 1995.

    Article  Google Scholar 

  • Robinson, S. G., and I. N. McCave, Orbital forcing of bottom-current enhanced sedimentation on Feni Drift, NE Atlantic, during the mid-Pleistocene, Paleoceanography, 9, 943–972 1994.

    Article  Google Scholar 

  • Ruddiman, W. F., and A. Mclntyre, The mode and mechanism of the last déglaciation: Oceanic evidence., Quat. Res., 16, 125–134 1981.

    Article  Google Scholar 

  • Sakai, K., and W. R. Peltier, A simple model of the Atlantic thermohaline circulation: Internal and forced variability with paleoclimatological implications, J. Geophys. Res., 100, 13, 455–13, 479 1995.

    Article  Google Scholar 

  • Sarmiento, J. L., On the north and tropical Atlantic heat balance, J. Geophys. Res., 91, 11, 677–11, 689 1986.

    Google Scholar 

  • Sarnthein, M., K. Winn, S. J. A. Jung, J.-C. Duplessy, L. Labeyrie, H. Erlenkeuser, and G. Ganssen, Changes in east Atlantic deepwater circulation over the last 30, 000 years — eight time slice reconstructions, Paleoceanography, 9, 209–267 1994.

    Article  Google Scholar 

  • Sarnthein, M. et al., Variations in Atlantic Ocean paleoceanography, 50°-80°N: A time slice record of the last 30, 000 years, Paleoceanography, 10, 1063–1094 1995.

    Article  Google Scholar 

  • Schmitz, W. J., Jr., On the interbasin-scale thermohaline circulation, Rev. Geophys., 33, 151–173 1995.

    Article  Google Scholar 

  • Schulz, H., Meeresoberflächentemperaturen im frühen Holozän 10, 000 Jahre vor heute, Ph.D. dissertation, Univ. Kiel, Kiel, Germany 1994.

    Google Scholar 

  • Seibold, E., and W. H. Berger, The Sea Floor; An Introduction to Marine Geology, 2nd ed., Springer-Verlag, New York 1993.

    Google Scholar 

  • Seidov, D. G., Numerical modeling of the ocean circulation and paleocirculation, Mesozoic and Cenozoic Oceans, Geodyn. Ser., vol.15, edited by K. J. Hsu, pp. 11–26, AGU, Washington, D. C. 1986.

    Chapter  Google Scholar 

  • Seidov, D., An intermediate model for large-scale ocean circulation studies, Dyn. Atmos. Oceans, 25/1, 25–55 1996.

    Article  Google Scholar 

  • Seidov, D., and R. Prien, A coarse resolution North Atlantic ocean circulation model: An intercomparison study with a paleoceanographic example, Ann. Geophys., 14, 246–257 1996.

    Article  Google Scholar 

  • Seidov, D., and B. J. Haupt, Simulated ocean circulation and sediment transport in the North Atlantic during the last glacial maximum and today, Paleoceanography, 12, No. 2, 281–305 1997.

    Article  Google Scholar 

  • Seidov, D., M. Sarnthein, K. Stattegger, R. Prien, and M. Weinelt, North Atlantic ocean circulation during the last glacial maximum and subsequent meltwater event: A numerical model, J. Geophys. Res., 101, 16, 305–16, 332 1996.

    Article  Google Scholar 

  • Semtner, A. J., Finite difference formulation of a world ocean model, in Advanced Physical Océanographie Modelling, edited by J. O’Brien, pp. 187–202, D. Reidel, Norwell, Mass. 1986.

    Google Scholar 

  • Send, U., and J. Marshall, Integral effects of deep convection, J. Phys. Oceanogr., 25, 855–872 1995.

    Article  Google Scholar 

  • Shanks, A. L., and J. D. Trent, Marine snow: Sinking rates and potential role in vertical flux, Deep Sea Res., Part A, 27, 137–143 1980.

    Article  Google Scholar 

  • Shapiro, R., The use of linear filtering as a parameterization of atmospheric diffusion, J. Atmos. Sci., 28, 523–531 1971.

    Article  Google Scholar 

  • Slowey, N. C., and W. B. Curry, Enhanced ventilation of the North Atlantic subtropical gyre thermocline during the last glaciation, Nature, 358, 665–668 1992.

    Article  Google Scholar 

  • Slowey, N. C., and W. B. Curry, Glacial-interglacial differences in circulation and carbon cycling within the upper western North Atlantic, Paleoceanography, 10, 715–732 1995.

    Article  Google Scholar 

  • Stocker, T. F., The variable ocean, Nature, 367, 221–222 1994.

    Article  Google Scholar 

  • Stommel, H., and A. B. Arons, On the abyssal circulation of the world ocean, II, An idealized model of the circulation pattern and amplitude in the oceanic basins, Deep Sea Res., 6, 217–233 1960.

    Google Scholar 

  • Stull, R. B., Transilient turbulence theory, I, The concept of eddy-mixing across finite distances, J. Atmos. Sci., 41, 3351–3367 1984.

    Article  Google Scholar 

  • Sündermann, J., North Sea Dynamics, Dynamics, edited by J. Sünderman and W. Lenz , 693 pp., Springer-Verlag, New York 1983.

    Chapter  Google Scholar 

  • Sündermann, J., and R. Klöcker, Sediment transport modeling with applications to the North Sea, in North Sea Dynamics, pp. 453–471, Springer-Verlag, New York 1983.

    Chapter  Google Scholar 

  • Syvitski, J. P. M., and T. M. C. Hughes, Delta 2: Delta progadation and basin filling, Comput. Geosci., 18, 839–897 1992.

    Article  Google Scholar 

  • Tetzlaff, D. N., and J. W. Harbaugh, Simulating Clastic Sedimentation, Van Nostrand Rein-hold, New York 1989.

    Book  Google Scholar 

  • Toggweiler, J. R., K. Dixon, and K. Bryan, Simulations of radiocarbon in a coarse-resolution world ocean circulation model, 1, Steady state prebomb distribution, J. Geophys. Res., 94, 8217–8242 1989.

    Article  Google Scholar 

  • Weaver, A. J., and T. M. C. Hughes, Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation, Nature, 367, 447–450 1994.

    Article  Google Scholar 

  • Weaver, A. J., and E. S. Sarachik, The role of mixed boundary conditions in numerical models of the ocean’s climate, J. Phys. Oceanogr., 21, 1470–1492 1991.

    Article  Google Scholar 

  • Weaver, A. J., J. Marotzke, P. F. Cummins, and E. S. Sarachik, Stability and variability of the thermohaline circulation, J. Phys. Oceanogr., 23, 39–60 1993.

    Article  Google Scholar 

  • Webb, R. S., D. H. Rind, Scott J. Lehman, R. J. Healy, and D. Sigman, Influence of ocean heat transport on the climate of the Last Glacial Maximum, Nature, 385, 695–699.

    Google Scholar 

  • Weinelt, M., Veränderungen der Oberflächenzirkulation im Europäischen Nordmeer während der letzten 60.000 Jahre — Hinweise aus stabilen Isotopen, Ber. 41, pp. 1–106, Sonderforschungsbereich 313, Univ. Kiel, Kiel, Germany 1993.

    Google Scholar 

  • Wold, C. N., Paleobathymetry and sediment accumulation in the northern North Atlantic and southern Greenland-Iceland-Norwegian Sea, Ph.D. thesis, Univ. of Kiel, Kiel, Germany 1992.

    Google Scholar 

  • Wright, D., and T. F. Stocker, A zonally averaged ocean model for the thermohaline circulation, I, Model development and flow dynamics, J. Phys. Oceanogr., 21, 1713–1724 1991.

    Article  Google Scholar 

  • Yu, E.-F., R. Francois, and M. P. Bacon, Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data, Nature, 379, 689–694 1996.

    Article  Google Scholar 

  • Zanke, U., Zusammenhänge zwischen Strömung und Sedimenttransport, Teil 1, Berechnung des Sedimenttransports — allgemeiner Fall , Mitt. Franzius Inst. Wasserbau Küste-ningeneuerswesen Tech. Univ. Hannover, 47, 214–345 1978.

    Google Scholar 

  • Zhang, S., C. Lin, and R. J. Greatbatch, A thermocline model for ocean-climate studies, J. Mar. Res., 50, 99–124 1992.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seidov, D., Haupt, B.J. (1999). Numerical Study of Glacial and Meltwater Global Ocean Thermohaline Conveyor. In: Harff, J., Lemke, W., Stattegger, K. (eds) Computerized Modeling of Sedimentary Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03902-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03902-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08380-8

  • Online ISBN: 978-3-662-03902-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics