Skip to main content
  • 789 Accesses

Abstract

The ability to change the energy-level structure of the gain medium through material and structure design is one of the unique properties of semiconductor lasers. To take full advantage of this capability, one needs to be able to predict the band structure that results from a particular material and structure combination. In this chapter and the following, we show a procedure for performing band-structure calculations that are relevant to the laser physicist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Much of the material discussed in this chapter can be found in many solid state physics textbooks and review articles, e.g.,

  • Altarelli, M. (1985), p. 12 in Heterojunctions and Semiconductor Superlattices, Eds. G. Allan, G. Bastard, N. Boccara, M. Lannoo, and M. Voos, Springer-Verlag, Berlin.

    Google Scholar 

  • Ashcroft, N. W. and N. D. Mermin (1976), Solid State Physics, Saunders College (HRW), Philadelphia.

    Google Scholar 

  • Bastard, G. (1988), Wave Mechanics Applied to Semiconductor Heterostructures, Les Editions de Physique, Paris.

    Google Scholar 

  • Callaway, J. (1974), Quantum Theory of the Solid State, Part A, Academic Press, New York.

    Google Scholar 

  • Kane, E. O. (1966), Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer, Academic, New York, p. 75.

    Google Scholar 

  • Kittel, C. (1971), Introduction to Solid State Physics, Wiley & Sons, New York

    Google Scholar 

  • Kittel, C. (1967) Quantum Theory of Solids, Wiley & Sons, New York.

    Google Scholar 

  • The block diagonalization of the Luttinger Hamiltonian has been done by: Broido, D. A. and L. J. Sham (1985), Phys. Rev. B31, 888.

    ADS  Google Scholar 

The spin-orbit coupling scheme is discussed, e.g., in

  • Schiff, L. (1968), Quantum Mechanics, McGraw-Hill, New York. Chap. 12.

    Google Scholar 

A large number of material parameters for many semiconductors can be found in

  • Landolt-Börnstein (1982), Numerical Data and Functional Relationships in Science and Technology, ed. K. H. Hellwege, Vol. 17 Semiconductors, edited by O. Madelung, M. Schulz, and H. Weiss, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chow, W.W., Koch, S.W. (1999). Bulk Band Structures. In: Semiconductor-Laser Fundamentals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03880-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03880-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08386-0

  • Online ISBN: 978-3-662-03880-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics