Skip to main content

Sensors in Adaptronics

  • Chapter
Adaptronics and Smart Structures

Abstract

The emergence of intelligent sensors arises from the fortunate conjunction of technological demands and technological feasibility. There was a time when engineers made do with a few basic measurements of physical quantities that they knew they could measure, rather than seek sensors that could accurately convey the information they really needed. As society and industry have become more complex this option has become less and less realistic. There is an increasing need to determine precise values of physical and chemical measurands independently of any other variables present. Large-scale integration has appeared just in time to provide a solution to the major problems posed by such needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brignell, J.E.: Quo vadis smart sensors?. Sens. Actuators, A37–38, pp. 6–8 (1993)

    Google Scholar 

  2. Brignell, J.E. and White, N.M.: Intelligent sensor systems. ( Institute of Physics Publishing, Bristol, 1994 )

    Google Scholar 

  3. Brignell, J.E.: Digital compensation of sensors. J. Phys. E: Sci. Instrum., 10, pp. 1097–1102 (1987)

    Article  Google Scholar 

  4. Brignell, J.E.: Sensors in distributed instrumentation systems. Sens. Actuators, 10, pp. 249–261 (1986)

    Article  Google Scholar 

  5. Brignell, J.E.; White, N.M. and Cranny, A.W.J.: Sensor applications of thick-film technology. IEE Proc. I, 135, 4, pp. 77–84 (1988)

    Google Scholar 

  6. White, N.M. and Brignell, J.E.: A planar, thick-film load cell. Sens. Actuators, 26, (1/3), pp. 313–319 (1991)

    Article  Google Scholar 

  7. White, N.M. and Brignell, J.E.: Excitation of thick-film resonant structures. IEE Proc.- Sci. Meas. Technol., 142, 3 pp. 244–248 (1995)

    Article  Google Scholar 

  8. Taner, A.H. and Brignell, J.E.: Aspects of intelligent sensor reconfiguration. Sens. Actuators, A46–47, pp. 525–529 (1995)

    Google Scholar 

  9. Taner, A.H. and Brignell: The role of the graphical user interface in the development of intelligent sensor systems. Man-machine interfaces for instrumentation, IEE Digest No: 1995/175, 3/1–3/6

    Google Scholar 

  10. Taner, A.H. and Brignell, J.E.: A graphical user interface for intelligent sensor ASIC reconfiguration. Proceedings of Sensors & their Applications VII, Dublin, 10–13, pp. 365–369 (Sept. 1995)

    Google Scholar 

  11. Sensors - A Comprehensive Survey. (edited by W. Göpel, et al.). Chapter Optical-Fiber Sensors VCH 1992

    Google Scholar 

  12. Inaudi, D.: Fiber Optic Smart Sensing. (pre-print) Handbook of the Methods in Optical Metrology (to be edited by P.K.Rastogi, Wiley).

    Google Scholar 

  13. Babel, W.; Hofmann, D.: Application of fibre-optic sensors for measurements on for damage detection on structures. Symposium on Non-Destructive Testing in Civil Engineering. Berlin ‘85, Proc. 2, pp. 1025–1032.

    Google Scholar 

  14. Brörmimann, R.; et al.: Measurement of Crack Propagation in Polymer Pipes with Embedded Optical Fibers. Smart Structures: Optical Instrumentation and Sensing Systems Conf. 1995, SPIE 250, pp. 12–19.

    Google Scholar 

  15. Noharet, B.; et al.: Impact detection on airborne multilayered structures. Smart Structures and Materials 1995, SPIE 2444, pp. 460–468.

    Google Scholar 

  16. Globale Bauwerksüberwachung mit Optischer Saite. Fa. DEHA-COM GmbH Köln.

    Google Scholar 

  17. Vulliet, L.; et al.: Development and laboratory tests of deformation fiber optic sensors for civil engineering applications. Laser, Optics and Vision for Productivity in Manufacturing I. Besancon June 1996. (pre-print)

    Google Scholar 

  18. Inaudi, D.; et al.: In-line coherence multiplexing of displacement sensors: a fiber optic extensometer. Smart Structures and Materials San Diego 1996, SPIE 2718, pp. 251–257.

    Google Scholar 

  19. OTDR-Prospekt Opto-Electronics Inc. Canada (1995) and Information by L.O.T. Oriel GmbH Darmstadt, 02/96.

    Google Scholar 

  20. Geiger, H.; et al.: Multiplexed Measurement of Strain Using Short and Long Gauge Length Sensors. Pre-print by the author.

    Google Scholar 

  21. Campbell, M.; et al.: Optimisation of Hi-birefringence Fibre Based Distributed Force Sensors. Smart Structures: Optical Instrumentation and Sensing Systems Conf. 1995, SPIE 2509, pp. 57–63.

    Google Scholar 

  22. Michie, W.C.; et al.: Distributed pH and Water Detection using Fiber-Optic Sensors and Hydrogels. J. of Ligthwave Technology 13(1995)7, pp. 1415–1420.

    Google Scholar 

  23. Hurtig, E.; et al.: Fibre optic temperature sensing: application for subsurface and ground temperature measurements. Tectonophysics 257 (1996) pp. 101–109.

    Article  Google Scholar 

  24. Wanser, K.H.; et al.: High Temperature Distributed Strain and Temperature Sensing using OTDR. in: Applications of Fiber Optic Sensors in Engineering Mechanics (Ed. by F. Ansari). ASCE 1993. New York.

    Google Scholar 

  25. Boiarski, A.A.: Distributed Fiber Optic Temperature Sensing. in: Applications of Fiber Optic Sensors in Engineering Mechanics (Ed. by F. Ansari). ASCE 1993. New York.

    Google Scholar 

  26. Bhatia, V.; et al.: Optical Fiber Extrinsic Fabry-Pérot Interferometric Strain Sensor for Multiple Strain State Measurements. Smart Structures and Materials, SPIE 72444, pp. 115–126.

    Google Scholar 

  27. deVries, M.; et al.: Applications of Absolute EFPI Fiber Optic Sensing System for Measurement of Strain in Pre-Tensioned Tendons for Prestrained Concrete. Smart Structures and Materials, SPIE 2446, pp. 9–15.

    Google Scholar 

  28. Murphy, K.;A; et al.: Fabry-Pérot fiber optic sensors in full-scale fatigue testing on an F-15 aircraft. Fiber Optics Smart Structures and Skins IV Conf. 1991, SPIE 1588, pp. 134–142.

    Google Scholar 

  29. Unpublished Research Report. No.: 4–06/96 IEMB e. V. Berlin/Germany, 1996.

    Google Scholar 

  30. Badcock, R.A.; Fernando, G.F.: Fatigue damage detection in carbon fibre reinforced composites using an intensity based optical fibre sensor. Smart Structures and Materials, SPIE 2444, pp. 422–431.

    Google Scholar 

  31. F & S Technologies Inc. (USA), Product Data and Technical Specifications, 1996.

    Google Scholar 

  32. Canadian Marconi Company (Canada). CMA-2026 Fiber-Optic Strain Sensor System Specifications. 1994.

    Google Scholar 

  33. Measures, R.M.: Fiber Optic Sensing for Composite Smart Structures. in: AGARD Conf. Proceed. 531(1992), pp. 11–1 to 11–43.

    Google Scholar 

  34. Habel, W.R.; et al.: Fiber sensors for damage detection on large structures and for assessment of deformation behavior of cementitious materials. Proc 11th Engineering Mechanics Conf. Fort Lauderdale 1996, Conf. 1, pp. 355–358.

    Google Scholar 

  35. Meltz, G.; et al.: Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters 14(1989)15, pp. 823–825.

    Google Scholar 

  36. M Specialty Single-Mode Fiber Products. (1996), via AMS-OptoTech. GmbH, Martinsried/Miinchen.

    Google Scholar 

  37. Technical Specifications: Bragg-Photonics Inc. and QPS Technology Inc. (1996), via Döhrer-Elektrooptik GmbH, Karlsbad/Germany.

    Google Scholar 

  38. Farahi, F.: Simultaneous Measurement of Strain and Temperature Using Fiber Grating Sensors. Proc 11th Engineering Mechanics Conf. Fort Lauderdale 1996, Conf. 1, pp. 351–354.

    Google Scholar 

  39. Habel, W.R.; et al.: Deformation measurements of mortars at early ages and of large concrete components on site by means of embedded fiber optic microstrain sensors. Cement & Concrete Composites (Special issue on Fiber Optic Sensors) 19(1997)1, pp. 81–102.

    Google Scholar 

  40. Davis, M.A.; et al.: Structural Strain Mapping using a Wavelength/Time Division Addressed Fiber Bragg Grating Array. 2nd. European Conf. on Smart Structures and Materials. Glasgow 1994, SPIE 2361, pp. 342–345.

    Google Scholar 

  41. Technical Specification: Fiber Optic Strain Measurement System. ElectroPhotonics Corp. 1995, and private communication (1996).

    Google Scholar 

  42. Troy, Ch., T.: Fiber Optic Smart Structures. Photonics Spectra, May 1997, pp. 112–128.

    Google Scholar 

  43. Habel, W.R.; Hillemeier, B.: Results in monitoring and assessment of damages in large steel and concrete structures by means of fiber optic sensors. Smart Structures and Materials, SPIE 2446, pp. 25–36.

    Google Scholar 

  44. Hofmann, D.: Unpublished research report. Fibre Sensor Laboratory of the IEMB e.V. Berlin/G, Nov. 1996.

    Google Scholar 

  45. Technical Specifications: Fiber Optic Probe Guides and METRICOR 2000-System. (1996). via Photonetics GmbH Stuttgart/Germany.

    Google Scholar 

  46. Technical Specifications: Fiberoptic Probes and Accessories for Model 790 Systems. Luxtron 03/93. via Polytec GmbH, Waldbronn/Germany.

    Google Scholar 

  47. Farahi, F.: Fiber Optic Sensors for Heat Transfer Studies. SPIE-proc. 1584, pp. 53–61.

    Google Scholar 

  48. Wang, A.; u.a.: Sapphire optical fiber-based interferometer for high temperature environmental applications. Smart Materials & Structures 4 (1995), pp. 147–151.

    Article  Google Scholar 

  49. Kersey, A.,D.: Multiplexed Fiber Optic Sensors. Distributed and Multiplexed Fiber Optic Sensors II, Boston 1992, SPIE 1797 (1992) pp. 161–185.

    Article  Google Scholar 

  50. Michie, W.C.; et al: Optical Fiber Techniques for Structural Monitoring in Composites. in: AGARD Conf. Proceed. 531(1992), pp. 8–1 to 8–9.

    Google Scholar 

  51. Eaton, N.C.; et al: Factors Affecting the Embedding of Optical Fibre Sensors in Advanced Composite Structures. in: AGARD Conf. Proceed. 531 (1992), pp. 20–1 to 20–14.

    Google Scholar 

  52. Sirkis, J.S.: Electro-opto-mechanical Design of Fiber Optic Smart Structures. 2nd. European Conf. on Smart Structures and Materials. Glasgow 1994, SPIE 2361, pp. 330–337.

    Google Scholar 

  53. Gardner, J.W. and Bartlett, P.N. (eds): Sensors and sensory systems for an electronic nose.(Kluwer Academic Publishers, Dordrecht, 1992 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brignell, J.E., White, N.M., Habel, W.R. (1999). Sensors in Adaptronics. In: Janocha, H. (eds) Adaptronics and Smart Structures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03819-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03819-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03821-5

  • Online ISBN: 978-3-662-03819-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics