Skip to main content

Reliability Analysis During the Design Phase

  • Chapter
Reliability Engineering
  • 459 Accesses

Abstract

Reliability analysis during the design and development phase is important to detect and eliminate reliability weaknesses as early as possible and to perform comparative studies with respect to reliability. Such an analysis includes failure rate and failure mode investigations, verification that design guidelines for reliability have been considered, and cooperation in design reviews. This chapter presents methods and tools for the failure rate and failure mode analysis of complex electronic and electromechanical equipment and systems. Design guidelines for reliability, maintainability, and software quality are given in Chapter 5. Design reviews are discussed in Appendices A3 and A4. Reliability tests are considered in Chapters 3, 7, and 8. After a short introduction (Section 2.1), Section 2.2 deals with series/parallel structures. Complex structures, elements with more than one failure mode, and parallel models with load sharing (e. g. for standby redundancy) are considered in Section 2.3. Reliability allocation is introduced in Section 2.4. Stress/strength and drift analyses are discussed in Section 2.5. Section 2.6 deals with failure mode analyses and Section 2.7 gives a list of questions for reliability aspects in design reviews. Computer aided analysis is considered in Section 6.8.2. Theoretical foundations for this chapter are given in Appendix A6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Reliability Techniques

  1. Arlat J. et al, “Fault injection and dependability evaluation of fault tolerant systems”, IEEE Trans. Comp., 42(1993)8, pp. 913–923.

    Article  Google Scholar 

  2. Birolini A., Zuverlässigkeit von Schaltungen und Systemen, 4th Ed. 1982, Course at the ETH Zurich; Modelle zur Berechnung der Rentabilität der Q.- und Zusicherung komplexer Waffen-systeme, 1986, GRD, Bern; “Zuverlässigkeitssicherung von Automatisierungssystemen”, ebi, 107(1990), pp. 258–271; Quality and Reliability of Technical Systems, 2nd Ed. 1997, Springer, Berlin; Zuverlässigkeit von Geräten und Systemen, 4th Ed. 1997, Springer, Berlin;

    Google Scholar 

  3. Catuneanu V.M., Mihalache A.N., Reliability Fundamentals, 1989, Elsevier, Amsterdam.

    MATH  Google Scholar 

  4. Dhillon B.S., Human Reliability, 1986, Pergamon, New York.

    Google Scholar 

  5. Friedman M.A., Tran P., “Reliability techniques for combined hardware/software systems”, Proc. Ann. Rel. & Maint, Symp., 1992, pp. 290–293.

    Google Scholar 

  6. Henley E.J., Kummamoto H., Probabilistic Risk Assessment, 1992, IEEE Press, Piscataway NJ.

    Google Scholar 

  7. IEC 60300–3-1 : Dep. Manag.- Analysis Tech. for Dependability, 1991 ; -9: - Risk Anal, of Technol. Systems, 1995; see also 60812 (FMEA), 61025 (FTA), 61078 (Rel. Block Diagram Method), 61165 (Markov Tech.), 60863 (Pres, of Rel., Maint., and Availability Predictions), 61709 (Failure Rates).

    Google Scholar 

  8. Jensen F., Electronic Component Reliability, 1995, Wiley, New York.

    Google Scholar 

  9. Klaassen K., “Active red. in analogue el. systems”, Proc.Ann.Rel.&M.Symp., 1975, pp.573–578.

    Google Scholar 

  10. Messerschmitt-Bölkow-Blohm (Ed.), Technische Zuverlässigkeit, 3rd Ed. 1986, Springer.

    Google Scholar 

  11. MIL-HDBK-338: Electronic Reliability Design Handbook, Vol. I Ed. A 1988, Vol. II 1984.

    Google Scholar 

  12. NASA CR-1126–1129: Practical Reliability (Vol. 1 to4), 1968.

    Google Scholar 

  13. O’Connor P.D.T., Practical Reliability Engineering, 3th Ed. 1991, Wiley, New York.

    Google Scholar 

  14. Pecht M.G., Palmer M., Naft J., “Thermal reliability management in PCB design”, Proc. Ann. Rel. & Maint. Symp., 1987, pp. 312–315.

    Google Scholar 

  15. RAC, WCCA: Worst Case Circuit Analysis Appi. Guidelines, 1993; RTMG: Thermal Management Guidebook, 1995; RADC-TR-90–109: Integration of Sneak Analysis with Design, 1990.

    Google Scholar 

  16. Rooney J.P., “Storage reliability”, Proc. Ann. Rel. & Maint. Symp., 1989, pp.178–182.

    Google Scholar 

  17. Siewiorek D.P., “Architecture of fault-tolerant computers, an historical perspective”, Proc. IEEE, 79(1991)12, pp. 1710–1734;

    Article  Google Scholar 

  18. Siewiorek D.P., and Swarz R.S., Reliable Computer Systems Design and Evaluation, 1992, Digital Press, Bedford MA.

    Google Scholar 

  19. Suich R.C., Patterson R.L, “Minimize system cost by choosing optimal subsystem reliability and redundancy”, Proc. Ann. Rel. & Maint Symp., 1993, pp. 293–297.

    Google Scholar 

  20. Tomek L. et al, “Rel. model, of fife-critical real-time systems”, Proc IEEE, 79(1994)1, pp.108–21.

    Article  Google Scholar 

  21. Villemeur A., Sûreté de Fonctionnement des Systèmes Industriels, 2nd Ed. 1993, Eyrolles, Paris.

    Google Scholar 

  22. Boxleitner W., Electrostatic Discharge and Electron. Equip., 1989, IEEE Press, Piscataway NJ.

    Google Scholar 

  23. Catrysse J., “PCB & system design under EMC constraints”, Proc. 11th Int. Zurich EMC Symposium, 1995, pp. 47–58.

    Google Scholar 

  24. Deutsch A., “Electrical characteristics of interconnections for high-performance systems”, Proc. IEEE, 86(1998)2, pp. 315–355.

    Article  Google Scholar 

  25. Gardner J.R., “The appropriateness of plastic encapsulated microcircuits in a specific wooden-round application”, IEEE Trans. Rel., 45(1996)1, pp. 10–17.

    Article  Google Scholar 

  26. Goedbloed J.J., Electromagnetic Compatibility, 1992, Prentice Hall, New York.

    Google Scholar 

  27. Haseloff E., Was nicht im Datenblatt steht, 1992, Appl.-Bericht EB 192, Texas Instruments, Freising; “Entwicklungsrichtlinien für schnelle Logikschaltungen und Systemen”, Proc. ETH/IEEE Conf. on Design Rules for Rel., EMC, Maint., Soft. Qual., 1993, ETH Zurich, Rel.Lab., pp 5.1–5.17.

    Google Scholar 

  28. Hellström S., ESD-The Scourge of Electronics, 1998, Springer, Berlin.

    Book  Google Scholar 

  29. Hirschi W., “EMV gerechte Auslegung elektron. Geräte”, Bull. SEV/VSE, 83(1992)11, pp. 25–29.

    Google Scholar 

  30. IEEE Special issues on: Design for Reliability of Telecom. Systems, IEEE Trans. ReL, 40(1991)3; Design for Reliability, IEEE Trans. ReL, 44(1995)2.

    Google Scholar 

  31. IEEE Std 1100–1992: IEEERecom. Practice for Powering and Grounding Sensitive El. Equip.

    Google Scholar 

  32. Mannone P., “ Careful design methods to prevent CMOS latch-up”, EDN, Jan. 26, 1984, 6 pp.

    Google Scholar 

  33. IPC, ANSI/IPC-SM-782: Surface Mount Land Patterns (Config. and Design Rules), 1987.

    Google Scholar 

  34. Ott H.W., Noise Reduction Techniques in Electronic Systems, 1976, Wiley, New York.

    Google Scholar 

  35. RAC, SOAR-6: ESD Control in the Manuf Envir, 1986; TR-82–172: Thermal Guide for Rel. Eng., 1982; VZAP: ESD Susceptibility Data, 1991.

    Google Scholar 

  36. Sergent J., Krum Al, Thermal Management Handbook, 1998, McGraw-Hill, New York.

    Google Scholar 

  37. Solberg V., Design Guidelines for Surface Mount and Fine Pitch Technolgy, 1996, McGraw-Hill, New York.

    Google Scholar 

  38. Vinson J.E., Liou J., “Electrostatic disch. in semicond dev”, Proc. IEEE, 86(1998)2, pp.399–418.

    Article  Google Scholar 

  39. White D.R.J., EMI Control in the Design of Printed Circuit Boards and Backplanes, 1982, Interf. Control Tech., Gainesville VI.

    Google Scholar 

  40. Abramovici M., Breuer M.A., Friedman A.D., Digital System Testing and Testable Design, 1990, Comp. Scient. Press, New York.

    Google Scholar 

  41. Bennetts R.G., Design of Testable Logic Circuits, 1984, Addison-Wesley, London.

    Google Scholar 

  42. DoD, AMCP-706–132: Engineering Design Handbook — Maintenance Engineering Tech., 1975;-133: Engineering Design Handbook — Maintainability Eng. Theory and Practice, 1975.

    Google Scholar 

  43. Lala P.K., Fault Tolerant and Fault Testable Hardware Design, 1985, Prentice-Hall, Engl. Cliffs NJ.

    Google Scholar 

  44. Maunder C., The Board Designer’s Guide to Testable Logic Circuits, 1992, Addison-Wesley, Reading MA

    Google Scholar 

  45. Maunder C.,A universal framework for managed Built-in Test, Proc. Int. Test Conf., Paris 1995, 8 pp.

    Google Scholar 

  46. Richards D.W., Klion J., “Smart BIT — an approach to better system-level built-in test”, Proc. Ann. Rel. & Maint. Symp., 1987, pp. 31–34.

    Google Scholar 

  47. Robinson G., Deshayes J., “Interconnect testing of boards with partial boundary-scan”, Proc. Int. Test Conf., 1990, paper 27.3.

    Google Scholar 

  48. Smith D.J. and Babb A.H., Maintainability Engineering, 1973, Pitman, London.

    Google Scholar 

  49. ACM Special issues on: Software Testing, Commun, of the ACM, 31(1988)6

    Google Scholar 

  50. Software Quality, Commun, of the ACM, 36(1993)11.

    Google Scholar 

  51. Adrion R.W., Branstad M.A., Cherniavsky J.C., “Validation, verification, and testing of computer software”, ACM Computing Surveys, 14(1982)2, pp. 159–192.

    Article  Google Scholar 

  52. Arlat J., Karama K., Laprie J.C., “Dependability modeling and evaluation of software fault-tolerant systems”, IEEE Trans. Comp., 39(1990)4, pp. 504–513.

    Article  Google Scholar 

  53. Bergland G.D., “A guided tour of program design methodologies”, Computer, 14(1990)10, pp.13–37.

    Article  Google Scholar 

  54. Boehm B.W., “Verifying and validating software requirements and design specifications”, Software, 1(1984)1, pp. 75–88

    Article  Google Scholar 

  55. Boehm B.W., “Improving software productivity”, Computer, 20(1987) 9, pp. 43–57

    Article  Google Scholar 

  56. Boehm B.W., Spiral model of software development and enhancement, Computer, 21 (1988)5, pp. 61–72.

    Article  Google Scholar 

  57. Brocklehurst S., Chan P.Y., Littlewood B., Snell J., “Recalibrating software reliability models”, IEEE Trans. Soft. Eng., 16(1990)4, pp. 458–469.

    Article  Google Scholar 

  58. BWB, Software-Entwicklungsstandard der BWB — Vorgehensmodell, 1991.

    Google Scholar 

  59. ESA PSS-05–04: Guide to the Software Architect, 1992; -05: Detailed Design and Prod, 1992; -08: Project Management, 1994; -09: Configuration Manag., 1992; -11: Quality Assurance, 1993.

    Google Scholar 

  60. Fenton N., Littlewood B., Software Reliability and Metries, 1991, Elsevier, London.

    Google Scholar 

  61. Gomaa H., “A software design meth. for real-time systems”, Comm. ACM, 27(1984)9, pp. 938–949.

    Article  Google Scholar 

  62. Grady R., “Practical res. from measur. soft, quality”, Commun, of the ACM, 36(1993)11, pp.62–68.

    Article  Google Scholar 

  63. Hansen M.D., “Survey of available software-safety analysis techniques”, Proc. Ann. Rel. & Maint. Symp., 1989, pp. 46–49.

    Google Scholar 

  64. Herrmann D.S., Peercy D.E., “The bridge between hardware, software, and system safety and reliability”, Proc. Ann. Rel. & Maint. Symp., 1999, pp. 396–402.

    Google Scholar 

  65. IEC, 60300–3–6: Depend. Manag. — Software Aspects of Dependability, 1997.

    Google Scholar 

  66. IEEE Special issues on: Software quality assurance, Computer, 12(1979)8; Fault Tolerant computing, Computer, 17(1984)8; Rapid prototyping, Computer, 22(1989)5; Verification and validation, Software, May 1988; Software Reliability, IEEE Trans. Rel., 28(1979)3; Software eng. project manag., IEEE Trans. Soft. Eng., 10(1984)1; Experimental computer science, IEEE Trans. Soft. Eng., 16(1990) 2; Software Quality, IEEE Software, Jan. 1996.

    Google Scholar 

  67. IEEE Software Eng. Std.: Vol. 1 to Vol. 4, 1999, see [A2.7].

    Google Scholar 

  68. Kline M.B., “Software and Hardware R&M — what are the differences?”, Proc. Ann. Rel. & Maint. Symp., 1980, pp. 179–184.

    Google Scholar 

  69. Leveson N.G. “Software safety in computer-controlled systems”, Computer, (1984)2, pp. 48–55

    Article  Google Scholar 

  70. Leveson N.G. “Software safety: why, what, and how”, ACM Computing Surveys, 18(1986)2, pp. 125–163.

    Article  Google Scholar 

  71. Littlewood B., Strigini L., “The risk of software”. Scient. Amer., 1992, pp. 38–43; “Validation of ultrahigh dependability for software-based syst”, Commun. of the ACM, 36(1993)11, pp. 69–80.

    Article  Google Scholar 

  72. Littlewood B., “Evaluation of software reliability — achievements and limitations”, Proc. ETH/IEEE Int. Symp. on Rel. Eng. 2V00, ETH Zurich, Rel. Lab., Oct. 17, 1996, 22 pp.

    Google Scholar 

  73. Musa J.D., Iannino A., Okumoto K., Software Reliability: Measurement, Prediction, Application, 1987, McGraw-Hill, New York.

    Google Scholar 

  74. Parnas D.L., van Schouwen A.J., Kwan S.P., “Evaluation of safety-critical software”, Commun, of the ACM, 33(1990)6, pp. 636–648.

    Article  Google Scholar 

  75. Pflegger S.L., “Measuring software reliability”, IEEE Spectrum, Aug. 1992, pp. 56–60

    Google Scholar 

  76. Reifer D.J., “Software Failure Modes and Effects Anal.”, IEEE Trans. Rel, 28(1979)3, pp.247–49.

    Article  Google Scholar 

  77. SAQ, 10300: Software Qualitätssich. und CASE, 1995; 10301: HDBK Beschaffung von Soft, 1996; 10302: HDBK für Audits im Soft.-Bereich, 1996; 10303: Grundl. zum Umgang mit Soft.-Probl., 1997.

    Google Scholar 

  78. Singpurwalla N.D., “The failure rate of software: does it exist?”, IEEE Trans. Rel., 44(1995)3, pp. 463–469.

    Article  Google Scholar 

  79. Stankovic J.A., “A serious problem for next-generation system”, Computer, 21(1988)10, pp.10–19.

    Article  Google Scholar 

  80. Wallace D. et al, “An analysis of selected software safety Std.”, IEEE AES Mag., 1992, pp. 3–14.

    Google Scholar 

  81. Ascher H., Feingold H., Repairable Systems Reliability, 1984, Dekker, New York.

    MATH  Google Scholar 

  82. Barlow R.E., Proschan F., Mathematical Theory of Reliability, 1965, Wiley, New York

    MATH  Google Scholar 

  83. Barlow R.E., Proschan F., Statistical Theory of Reliability and Life Testing, 1975, Holt Rinehart & Winston, New York.

    MATH  Google Scholar 

  84. Beichelt F., Franken P., Zuverlässigkeit und Instandhaltung — Math. Methoden, 1983, Technik, Berlin

    Google Scholar 

  85. Beichelt F., Zuverlässigkeits- und Instandhaltbarkeitstheorie, 1993, Teubner, Stuttgart.

    Google Scholar 

  86. Birolini A., “Comments on renewal theoretic aspects of two-unit redundant systems”, IEEE Trans. Rel., 21(1972)2, pp 122–123

    Article  Google Scholar 

  87. Birolini A., “Generalization of the expressions for the rel. and availability of rep. items”, Proc. 2. Int. Conf. on Struct. Mech. in Reactor Techn, Berlin: 1973, Vol. VI, pp. 1–16

    Google Scholar 

  88. Birolini A., “Some appl. of regen. stoch. processes to reliability theory — part two: rel. and availability of 2-item redundant systems”, IEEE Trans. Rel., 24(1975)5, pp. 336–340

    Article  MathSciNet  Google Scholar 

  89. Birolini A., On the Use of Stochastic Proc. in Modeling Rel. Problems, 1985, Springer, Berlin (Lecture Notes in Ec. and Math. Systems Nr. 252)

    Book  Google Scholar 

  90. Birolini A., Quality and Reliability of Technical Systems, 2nd Ed. 1997, Springer, Berlin

    Book  MATH  Google Scholar 

  91. Birolini A., Zuverlässigkeit von Geräten und Systemen, 4th Ed. 1997, Springer, Berlin.

    Book  Google Scholar 

  92. Bobbio A., Roberti L., “Distribution of the minimal completition time of parallel tasks in multi-reward semi-Markov models”, Performance Eval, 14(1992), pp. 239–256.

    Article  MathSciNet  MATH  Google Scholar 

  93. Brenner A., Performability and Dependability of Fault-Tolerant Systems, 1996, Ph. D. Thesis 11623, ETH Zurich.

    Google Scholar 

  94. Choi, C.Y. et al, “Safety issues in the comparative analysis of dependable architectures”, IEEE Trans. Rel., 46(1997)3, pp. 316–322.

    Article  Google Scholar 

  95. Dhillon B.S., Rayapati S.N., “Common-cause failures in repairable systems”, Proc. Ann. Rel. & Maint. Symp., 1988, pp. 283–289.

    Google Scholar 

  96. Dyer D., “Unification of rel./availab. mod. for Markov syst.”, IEEE Trans. Rel, 38(1989)2, pp.246–52.

    Article  MATH  Google Scholar 

  97. Gaede K.W., Zuverlässigkeit Mathematische Modelle, 1977, Hanser, Munich.

    MATH  Google Scholar 

  98. Gnedenko B.V., Beljajev J.K., Soloviev A.D., Mathematical Methods of Reliability Theory, 1969, Academic, New York (1968, Akademie, Berlin).

    MATH  Google Scholar 

  99. Kovalenko I., Birolini A., “Uniform exponential boundes for the availability of a repairable system”, in Exploring Stochastic laws, Homage to V.S. Korolyuk, 1995, VSP, Utrecht, pp.233–242.

    Google Scholar 

  100. Kullstam A., “Availability, MTBF and MTTR for repairable M-out-of-N Systems”, IEEE Trans. Rel., 30(1981)4, pp. 393–394.

    Article  MATH  Google Scholar 

  101. Kumar A., Agarwal M., “A review of standby red. syst”, IEEE Trans. Rel, 29(1980)4, pp. 290–294.

    Article  MATH  Google Scholar 

  102. Osaki S., Nakagawa T., “Bibliography for reliability and availability of stochastic systems”, IEEE Trans. Rel. 25(1976)4, pp. 284–287.

    Article  MathSciNet  MATH  Google Scholar 

  103. Rai S., Agrawal D.P. (Ed.), Advances in Distributed Systems Reliability and Distributed Computing Network Reliability, 1990, IEEE Press, Piscataway NJ.

    Google Scholar 

  104. Ravichandran N., Stochastic Methods in Reliability Theory, 1990, Wiley Eastern, New Dehli.

    MATH  Google Scholar 

  105. Schneeweiss W.G., “Mean time to first failure of repairable systems with one cold spare”, IEEE Trans. Rel., 44(1995)4, pp. 567–574.

    Article  MathSciNet  Google Scholar 

  106. Ushakov I.A., Harrison R., Handbook of Reliability Engineering, 1994, Wiley, New York.

    Book  MATH  Google Scholar 

Failure Rates/Models for Electronic Components

  1. AFCIQ: Données de Fiabilité en Stockage des Composants Electroniques, 1983.

    Google Scholar 

  2. Bellcore, TR-332: Reliability Prediction Procedure for Electronic Equipment, 6th Ed. 1997,Bellcore, Livingston NJ.

    Google Scholar 

  3. CNET RDF 93: Recueil de Données de Fiabilité des Composants Electroniques, 1993, CNET, Lannion (also as British Telecom Rel HDBK and Italtel Rel Pred. HDBK); RDF 99 announced.

    Google Scholar 

  4. IEC 61709: Electronic Components Reliability - Reference Condition for Failure Rates and StressModels for Conversion, 1996.

    Google Scholar 

  5. IEEE Stdl413–1998: IEEE Standard Methodology for Rel Pred. and Assessm. for el. Syst.& Equip.

    Google Scholar 

  6. MIL-HDBK-217: Reliability Prediction of Electronic Equipment, Ed. F 1991, Not. 2 1995.

    Google Scholar 

  7. NTT: Standard Rel Tables for Semicond. Dev., 1985, Nippon Telegraph and Tel., Tokyo.

    Google Scholar 

  8. RAC, NONOP-1: Nonoperating Rel Data, 1992; NPRD-95: Nonelectronic Parts Rel Data, 1995;

    Google Scholar 

  9. see also TR-89–177: VHSIC/ VHSIC Rel Modeling, 1989 and TR-90–72: Rel Analysis Assessmentof Advanced Technologies, 1990; Failure Rate Models, announced with PRISM [2.57].

    Google Scholar 

  10. Siemens, SN 29 500 Teil l: Ausfallraten Bauelemente, 1991, Siemens, Munich (also in DIN 40039).

    Google Scholar 

Reliability of Large/Complex Structures

  1. Arunkumar S., Lee S.H., “Enumeration of all minimal cut-sets for a node pair in a graph”, IEEE Trans. Rel. 28(1987)1, pp. 51–55.

    Article  Google Scholar 

  2. Bansal V.K., “Minimal pathsets and minimal cutsets using search techniques”, Microel. & Rel. 22(1982)6, pp. 1067–1075.

    Article  Google Scholar 

  3. Barlow R.E., Proschan F., Mathematical Theory of Reliability, 1965, Wiley, New York;

    MATH  Google Scholar 

  4. Barlow R.E., Proschan F., Statistical Theory of Reliability and Life Testing, 1975, Holt Rinehart, New York.

    MATH  Google Scholar 

  5. Bollinger R.C., Salvia A.A., “Consecutive-k-out-of-n: F networks”, IEEE Trans. Rel. 31(1982)1, pp. 53–56;

    Article  MATH  Google Scholar 

  6. Bollinger R.C., Salvia A.A., “Strict consecutive-k-out-of-n: F systems”, IEEE Trans. Rel. 34(1985)1, pp. 50–52.

    Article  MATH  Google Scholar 

  7. Heneley E.J., Kumamoto H., Probabilistic Risk Assessment, 1992, IEEE Press, Piscataway NJ.

    Google Scholar 

  8. Hura G.S., “A Petri net approach to enumerate all system success paths for rel. evaluation of complex systems”; “Petri net approach to the analysis of a structured program”; “Petri net as a mod. tool”, Microel. & Rel. 22 (1982)3, pp. 427–439, 23(1983), pp. 157–159,467–475, 851–853.

    Article  Google Scholar 

  9. IEEE Trans. ReL, Special issues on: Network ReL, 35(1986)3, Reliability of Parallel & Distributed Computing Networks, 38(1989)1, Experimental Evaluation of Computer Systems ReL, 39(1990)4, Design for Reliability of Telecomm. Systems and Services, 40(1991)4.

    Google Scholar 

  10. Kossow A., Preuss W., “Failure probability of strict consecutive-k-out-of-n: F systems”, IEEE Trans. Rel. 36(1987)5, pp. 551–553;

    Article  Google Scholar 

  11. Kossow A., Preuss W., “Rei. of consecutive-k-out-of-n: F systems with nonidentical component rel.”, IEEE Trans. Rel. 38(1989), pp. 229–233;

    Article  MATH  Google Scholar 

  12. Kossow A., Preuss W., “Mean time to failure for linear-consec-k-out-of-n: F systems”, IEEE Trans. Rel. 40(1991)3, pp. 271–272;

    Article  MATH  Google Scholar 

  13. Kossow A., Preuss W., “Rei. of linear consecutive connected systems with multistate comp.”, IEEE Trans. Rel. 44(1995)3, pp. 518–522.

    Article  Google Scholar 

  14. Luo T., Trivedi K.S., “An improved algorithm for coherent-system reliability”, IEEE Trans. Rel. 47(1998)1, pp. 73–78.

    Article  Google Scholar 

  15. Rai S. and Agrawal D.P. (Ed.), Advances in Distributed Systems Reliability, 1990 IEEE Press, Piscataway NJ;

    Google Scholar 

  16. Rai S. and Agrawal D.P. (Ed.), Distributed Computing Network Reliability, 1990, IEEE Press, Piscataway NJ.

    Google Scholar 

  17. Râde L., “Reliability survival equivalence”, Microel. & Rel. 33(1993)6, pp. 881–894.

    Article  Google Scholar 

  18. Sanso B., Soumis F., “Communication and transportation network reliability using routing models”, IEEE Trans. Rel. 40(1991)1, pp. 29–38.

    Article  MATH  Google Scholar 

  19. Schneeweiss W., Zuverlässigkeits-Systemtheorie, 1980, Datakontex, Köln;

    Google Scholar 

  20. Schneeweiss W., Boolean Functions with Engineering Applications and Computer Programs, 1989, Springer, Berlin;

    Book  MATH  Google Scholar 

  21. Schneeweiss W., “Usefulness of MTTF of 5-independent case in other cases”, IEEE Trans. Rel. 41(1992)2, pp. 196–200;

    Article  MATH  Google Scholar 

  22. Schneeweiss W., “Calculating mean system-failure freq. with prescribed accuracy”, IEEE Trans. Rel. 46(1997)2, pp. 201–207.

    Article  Google Scholar 

  23. Stornier H., Mathematische Theorie der Zuverlässigkeit, 2nd Ed., 1983, Oldenbourg, Munich.

    Google Scholar 

  24. Ascher H., Feingold H., Repairable Systems Reliability, 1984, Dekker, New York.

    MATH  Google Scholar 

  25. Barlow R.E., Proschan F., Mathematical Theory of Reliability, 1965, Wiley, New York

    MATH  Google Scholar 

  26. Barlow R.E., Proschan F., Statistical Theory of Reliability and Life Testing, 1975, Holt Rinehart & Winston, New York.

    MATH  Google Scholar 

  27. Beichelt F., Franken P., Zuverlässigkeit und Instandhaltung — Math. Methoden, 1983, Technik, Berlin

    Google Scholar 

  28. Beichelt F., Zuverlässigkeits- und Instandhaltbarkeitstheorie, 1993, Teubner, Stuttgart.

    Google Scholar 

  29. Birolini A., “Comments on renewal theoretic aspects of two-unit redundant systems”, IEEE Trans. Rel., 21(1972)2, pp 122–123

    Article  Google Scholar 

  30. Birolini A., “Generalization of the expressions for the rel. and availability of rep. items”, Proc. 2. Int. Conf. on Struct. Mech. in Reactor Techn, Berlin: 1973, Vol. VI, pp. 1–16

    Google Scholar 

  31. Birolini A., “Some appl. of regen. stoch. processes to reliability theory — part two: rel. and availability of 2-item redundant systems”, IEEE Trans. Rel., 24(1975)5, pp. 336–340

    Article  MathSciNet  Google Scholar 

  32. Birolini A., On the Use of Stochastic Proc. in Modeling Rel. Problems, 1985, Springer, Berlin (Lecture Notes in Ec. and Math. Systems Nr. 252)

    Book  Google Scholar 

  33. Birolini A., Quality and Reliability of Technical Systems, 2nd Ed. 1997, Springer, Berlin

    Book  MATH  Google Scholar 

  34. Birolini A., Zuverlässigkeit von Geräten und Systemen, 4th Ed. 1997, Springer, Berlin.

    Book  Google Scholar 

  35. Bobbio A., Roberti L., “Distribution of the minimal completition time of parallel tasks in multi-reward semi-Markov models”, Performance Eval, 14(1992), pp. 239–256.

    Article  MathSciNet  MATH  Google Scholar 

  36. Brenner A., Performability and Dependability of Fault-Tolerant Systems, 1996, Ph. D. Thesis 11623, ETH Zurich.

    Google Scholar 

  37. Choi, C.Y. et al, “Safety issues in the comparative analysis of dependable architectures”, IEEE Trans. Rel., 46(1997)3, pp. 316–322.

    Article  Google Scholar 

  38. Dhillon B.S., Rayapati S.N., “Common-cause failures in repairable systems”, Proc. Ann. Rel. & Maint. Symp., 1988, pp. 283–289.

    Google Scholar 

  39. Dyer D., “Unification of rel./availab. mod. for Markov syst.”, IEEE Trans. Rel, 38(1989)2, pp.246–52.

    Article  MATH  Google Scholar 

  40. Gaede K.W., Zuverlässigkeit Mathematische Modelle, 1977, Hanser, Munich.

    MATH  Google Scholar 

  41. Gnedenko B.V., Beljajev J.K., Soloviev A.D., Mathematical Methods of Reliability Theory, 1969, Academic, New York (1968, Akademie, Berlin).

    MATH  Google Scholar 

  42. Kovalenko I., Birolini A., “Uniform exponential boundes for the availability of a repairable system”, in Exploring Stochastic laws, Homage to V.S. Korolyuk, 1995, VSP, Utrecht, pp.233–242.

    Google Scholar 

  43. Kullstam A., “Availability, MTBF and MTTR for repairable M-out-of-N Systems”, IEEE Trans. Rel., 30(1981)4, pp. 393–394.

    Article  MATH  Google Scholar 

  44. Kumar A., Agarwal M., “A review of standby red. syst”, IEEE Trans. Rel, 29(1980)4, pp. 290–294.

    Article  MATH  Google Scholar 

  45. Osaki S., Nakagawa T., “Bibliography for reliability and availability of stochastic systems”, IEEE Trans. Rel. 25(1976)4, pp. 284–287.

    Article  MathSciNet  MATH  Google Scholar 

  46. Rai S., Agrawal D.P. (Ed.), Advances in Distributed Systems Reliability and Distributed Computing Network Reliability, 1990, IEEE Press, Piscataway NJ.

    Google Scholar 

  47. Ravichandran N., Stochastic Methods in Reliability Theory, 1990, Wiley Eastern, New Dehli.

    MATH  Google Scholar 

  48. Schneeweiss W.G., “Mean time to first failure of repairable systems with one cold spare”, IEEE Trans. Rel., 44(1995)4, pp. 567–574.

    Article  MathSciNet  Google Scholar 

  49. Ushakov I.A., Harrison R., Handbook of Reliability Engineering, 1994, Wiley, New York.

    Book  MATH  Google Scholar 

Software Tools

  1. Bernet R., “CARP - A program to calculate the predicted reliability”, 6th Int. Conf. on Rei. & Maint, Strasbourg 1988, pp. 306–310;

    Google Scholar 

  2. Bernet R., Modellierung reparierbarer Systeme durch Markoff- und Semiregenerative Prozesse, 1992, Ph.D.Thesis 9682, ETH Zurich; Birolini A. et al, CARAP ETH Technical Spec, 1995, Report S10, ETH Zürich, Rel. Lab.; Kovalenko I. and Kuznetov N., Basis of the RS-ProgramIGuidance to the RS-Program, 1997, Rep. S13/S14, ETH Zurich, ReL Lab.

    Google Scholar 

  3. Bowles J.B. and Klein L.A., “Comparison of commercial reliability-prediction programs”, Proc. Ann. Rei. & Maint. Symp., 1990, pp. 450–455.

    Google Scholar 

  4. Gymayr J. and Ebeken N., “Fault-tree analysis: a knowledge-engineering approach”, IEEE Trans. Rel. 44(1995)1, pp. 37–45.

    Article  Google Scholar 

  5. Jaeger H., “Computerprogramm RAMTOOL”, Proc. ETH/IEEE Int. Symp. on Rei. Eng. 2V00, ETH Zurich, Rel Lab., Oct. 17, 1996 (20 pp); Zuverlässigheit und Materialerhaltbarkeit, Course at the Bundesakad. für Wehrverwaltung und Wehrtechnik, Mannheim, 1998.

    Google Scholar 

  6. Johnson A.M. and Malek M., “Survey of software tools for evaluating reliability, availability, and serviceability”, ACM Comp. Surveys, 20(1988)4, pp. 227–269.

    Article  Google Scholar 

  7. Locks M.O., “Recent develop, in computing system rel.”, IEEE Trans. Rel. 34(1985)5, pp. 425–36.

    Article  MATH  Google Scholar 

  8. RAC, RMST: Rei. & Maint. Software Tools, 1993; PRISM: Software Package for Assessing Components and Systems Reliability, announced.

    Google Scholar 

  9. Sahner R., Trivedi K.,“Rel. modeling using SHARPE”, IEEE Trans. Rei. 36(1987), pp. 186–193.

    Article  Google Scholar 

Mechanical Reliability

  1. AFCIQ, Guide d’ Evaluation de la Fiabilité en Mécanique, 1981.

    Google Scholar 

  2. Barer R.D., Why Metals Fail, 3rd Ed. 1974, Gordon & Breach, New York.

    Google Scholar 

  3. Bertsche B., Lechner G., Zuverlässigkeit im Maschinenbau, 1990, Springer, Berlin.

    Book  Google Scholar 

  4. Bogdanoff J.L., Kozin F., Probabilistic Models for Cumulative Damage, 1985, Wiley, New York.

    Google Scholar 

  5. Carter A.D.S., Mechanical Reliability, 2nd Ed. 1986, Macmillan, London.

    Google Scholar 

  6. Collins J.A., Failure of Materials in Mechanical Design, 1981, Wiley, New York.

    Google Scholar 

  7. Engelmaier W., Reliable Surface Mount Solder Attachements Through Design and Manuf Quality, 1993, Report L21, ETH Zurich, Rel. Lab.(also in Proc.ETH/IEEE Workshop on SMT, 1992).

    Google Scholar 

  8. Freddi S., Design of Experiment, Course at the 15th Symp. Danubia-Adria, Bertinoro, 1998.

    Google Scholar 

  9. Hutchings F., Unterweiser P. (Ed.), Failure Analysis, 1981, Am. Soc. Met., Metals Park OH.

    Google Scholar 

  10. Kececioglu D., Reliability Eng. Handbook (Vol. 1 & 2), 1991, Prentice, Englewood Cliffs NJ.

    Google Scholar 

  11. Kutz M. (Ed.), Mechanical Engineers’ Handbook, 1986, Wiley, New York.

    Google Scholar 

  12. Manson S.S., Thermal Stress and Low-Cycle Fatigue, 1981, Krieger, Malabar FL.

    Google Scholar 

  13. Nelson J. et al, “Rel. models for mech. equip.”, Proc. Ann. Rel.&Maint. Symp., 1989, pp. 146–153.

    Google Scholar 

  14. RAC, Mechanical Applications in Reliability Engineering, 1993.

    Google Scholar 

Failure (Fault) Mode and Effects Analysis (FMEA), Fault Tree Analysis (FTA)

  1. Bednarz S. et al, “Efficient analysis for FMEA”, Proc. Ann. Rel. & Maint. Symp., 1988, pp. 416–21.

    Google Scholar 

  2. DIN 25419: Störfallablaufanalyse, 1977–79; 25424: Fehlerbaumanalyse, 1981; 25448: Ausfalleffektanalyse, 1980; 31000: Allg. Leit.ßrdas sicherheitsgerechte Gestalten tech. Erzeug., 1979.

    Google Scholar 

  3. Feo T., “PAFT F77: Program for the anal, of fault trees”, IEEE Trans. Rel., 35(1986)1, pp.48–50.

    Article  Google Scholar 

  4. IEC 60812: Procedure for FMEA, 1985; 61025: Fault Tree Analysis (FTA), 1990.

    Google Scholar 

  5. Hall F.M., Paul R.A., and Snow W.E., “Hardware/Software FMECA”, Proc. Ann. Rel. & Maint. Symp., 1983, pp. 320–327.

    Google Scholar 

  6. Jackson T., “Integration of sneak circuit analysis with FMEA”, Proc. Ann. Rel. & Maint. Symp., 1986, pp. 408–414.

    Google Scholar 

  7. MIL-STD-1629: Procedures for Performing a FMECA, Ed. A 1980.

    Google Scholar 

  8. Price C.J. et al, “Identifying design glitches through automated design analysis”, Proc. Ann. Rel.&Maint. Symp., 1999, pp.277–282.

    Google Scholar 

  9. RAC, FMECA, 1993; FTA, 1990; WCCA (Worst Case Circuit Analysis), 1992.

    Google Scholar 

  10. Stamenkovic B. and Holovac S., “Failure modes, effects and criticality analysis: The basic concepts and applications”, Proc. Int. Summer Seminar, Dubrovnik, 1987, pp. 21–25.

    Google Scholar 

  11. Collett R.E. and Bochant P.W., “Integration of BIT effectiveness with FMECA”, Proc. Ann. Rel. & Maint. Symp., 1984, pp. 300–305.

    Google Scholar 

  12. Hansen M.D., “Survey of available software-safety analysis techniques”, Proc. Ann. Rel. & Maint. Symp., 1989, pp. 46–49.

    Google Scholar 

  13. Herrmann D.S., Peercy D.E., “The bridge between hardware, software, and system safety and reliability”, Proc. Ann. Rel. & Maint. Symp., 1999, pp. 396–402.

    Google Scholar 

  14. Kline M.B., “Software and Hardware R&M — what are the differences?”, Proc. Ann. Rel. & Maint. Symp., 1980, pp. 179–184.

    Google Scholar 

  15. Reifer D.J., Software Failure Modes and Effects Anal.”, IEEE Trans. Rel, 28(1979)3, pp.247–49.

    Article  Google Scholar 

  16. Stankovic J.A., “A serious problem for next-generation system”, Computer, 21(1988)10, pp.10–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birolini, A. (1999). Reliability Analysis During the Design Phase. In: Reliability Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03792-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03792-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03794-2

  • Online ISBN: 978-3-662-03792-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics