Skip to main content

Basic Mathematical Statistics

  • Chapter
Reliability Engineering

Abstract

Mathematical statistics deals basically with situations which can be described as follows: Given a population of statistically identical, independent elements with unknown (statistical) properties, measurements regarding these properties are made on a (random) sample of this population and, on the basis of the collected data, conclusions are made for the remaining elements of the population. Examples are the parameter estimation for the distribution function of an item’s failure-free operating time τ, or the decision whether the expected value (mean) of τ is greater than a given value. Mathematical statistics thus goes from observations (realizations) of a given (random) event in a series of independent trials and searches for a suitable probabilistic model for the event considered (inductive approach). Methods used are based on probability theory and results obtained can only be formulated in a probabilistic language. Minimization of the risk for a false conclusion is an important objective in mathematical statistics. This Appendix introduces the basic concepts of mathematical statistics used in planning and evaluating quality and reliability tests, as given in Chapter 7. Emphased are empirical methods, (statistical) parameter estimation, and (statistical) testing of hypotheses. To simplify the notation, the terms random and statistical (in brackets) will often be omitted, and mean stands for expected value. This appendix is a compendium of mathematical statistics, consistent from a mathematical point of view but still with engineering applications in mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

A8 Mathematical Statistics

  1. Bain L., Engelhardt M., Statistical Analysis of Rel. and Life-Testing Models, 1991, Dekker NY.

    Google Scholar 

  2. Barlow R.E., Bartholomew D.J., Bremner J.M., Brunk H.D., Statistical Inference Under Order Restrictions, 1972, Wiley, New York;

    MATH  Google Scholar 

  3. Barlow R.E., Campo R.A., Total Time on Test Processes and Applications to Failure Data Analysis, 1975, Tech. Rep. 75–0195, Aerospace Res. Lab., Ohio.

    MATH  Google Scholar 

  4. Belyayev J.K., “Unbiased estimation of the parameter of an exponential distribution”, Eng. Cybernetics, (1983)3, pp.78–81.

    MathSciNet  Google Scholar 

  5. Birnbaum Z.W., “Numerical tabulation of the distribution of Kolmogorov’s statistic for finite sample size”, Annals Stat. Ass., 47(1952), pp. 425–441.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cantelli F.P., “Considerazioni sulla legge uniforme dei grandi numeri e sulla generalizzazione di un fondamentale teorema del Sig. Paul Lévy”, Giornale Attuari, 1933, pp. 327–338; “Sulla determinazione empirica delle leggi di probabilità”, Giorn. Attuari, 1933, pp. 421–424.

    Google Scholar 

  7. Chernoff H., Lehmann E.L., “The use of maximum Likelihood estimates in χ2 goodness-of-fit”, Ann. Math. Stat., 25(1954), pp. 579–586.

    Article  MathSciNet  MATH  Google Scholar 

  8. Clopper C.J., Pearson E.S., “The use of confidence or fiducial limits illustrated in the case of the binomial”, Biometrika, 26(1934), pp. 404–413.

    Article  MATH  Google Scholar 

  9. Cochran W.G., “The χ2 tests of goodness of fit”, Ann. Math. Stat., 23(1952), pp. 315–345.

    Article  MathSciNet  MATH  Google Scholar 

  10. Cramér H., Mathematical Methods of Statistics, 1958, Univ. Press, Princeton.

    Google Scholar 

  11. d’Agostino R.B., Stephens M. A., Goodness-of-fit-Techniques, 1986, Dekker, New York.

    MATH  Google Scholar 

  12. Darling D.A., “The Kolmogorov-Smirnov, Cramer-von Mises tests”, Ann. Math. Stat., 28(1957), pp. 823–838.

    Article  MathSciNet  MATH  Google Scholar 

  13. Epstein B, et al, “Life testing”, J. Amer. Stat. Ass., 48(1953), pp. 486–502; “Sequential life tests in the exponential case”, Ann. Math. Stat., 26(1955), pp. 82–93; “The exact analysis of sequential life tests with particular application to AGREE plans”, Rel. & Maint. Conf, 1963, pp. 284–310.

    Article  MATH  Google Scholar 

  14. Feller W., “On the Kolmogorov-Smirnov limit theorems for empirical distributions”, Ann. Math. Stat., 19(1948), pp. 177–189.

    Article  MathSciNet  MATH  Google Scholar 

  15. de Finetti B., “Sull’approssimazione empirica di una legge di probabilità”, Giorn. Attuari, 1933, pp. 415–420.

    Google Scholar 

  16. Fisher R.A.,“On the mathematical foundations of theoretical statistics”, Phil. Trans., A 222(1921), pp. 309–368; “The conditions under which χ2 measures the discrepancy between observation and hypothesis”, J. Roy Stat. Soc, 87(1924), pp. 442–450; “Theory of statistical estimation”, Proc. Cambridge Phil. Soc, 22(1925), pp. 700–725.

    Google Scholar 

  17. Gliwenko V., “Sulla determinazione emp. delle leggi di probabilità”, Giorn. Attuari, 1933, pp.92–99.

    Google Scholar 

  18. Gumbel E.J., Statistics of Extremes, 1958, Columbia Univ. Press, New York.

    MATH  Google Scholar 

  19. Heinhold J., Gaede K.W., Ingenieur-Statistik, 4th Ed. 1979, Oldenbourg, Munich.

    Google Scholar 

  20. Kalbfleisch J.D., Prentice R.L., Statistical Analysis of Failure Time Data, 1988, Wiley, New York.

    Google Scholar 

  21. Kolmogoroff A.N., “Sulla determinazione empirica di una legge di distribuzione”, Giorn. Attuari, 1933, pp. 83–91.

    Google Scholar 

  22. Lawless J. F., Statistical Models and Methods for Lifetime Data, 1982, Wiley, New York.

    MATH  Google Scholar 

  23. Lehmann E.L., Testing Statistical Hypotheses, 1959, Wiley, New York.

    MATH  Google Scholar 

  24. Mann N.R., Schafer R.E., Singpurwalla N.D., Methods for Statistical Analysis of Reliability and Life Data, 1974, Wiley, New York.

    MATH  Google Scholar 

  25. Martz H.F. and Waller R.A., Bayesian Reliability Analysis, 1982, Wiley, New York.

    MATH  Google Scholar 

  26. Miller L.H., “Table of % points of Kolmogorov statistics”, J. Amer. Stat. Ass., 51(1956), pp.111–121.

    Article  MATH  Google Scholar 

  27. Pearson K., “On deviations from the probable in a correlated system of variables”, Phil. Magazine, 50(1900), pp. 157–175.

    Article  MATH  Google Scholar 

  28. Rohatgi V.K., An Introduction to Probability Theory and Mathematical Statistics, 1976, Wiley, New York.

    MATH  Google Scholar 

  29. Serfling R.J., Approximation Theorems of Mathematical Statistics, 1980, Wiley, New York.

    Book  MATH  Google Scholar 

  30. Smirnov N., “On the estimation of the discrepancy between empirical curves of distribution for two independent samples”, Bull. Math. Moscow Univ., 2(1939), fasc. 2

    Google Scholar 

  31. Wald A., Sequential Analysis 1947, Wiley, New York; Statistical Decision Functions, 1950, Wiley, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birolini, A. (1999). Basic Mathematical Statistics. In: Reliability Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03792-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03792-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03794-2

  • Online ISBN: 978-3-662-03792-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics