Skip to main content

An Introductory Example: Independent Random Walks

  • Chapter
Scaling Limits of Interacting Particle Systems

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 320))

  • 2011 Accesses

Abstract

The main purpose of this book is to present general methods that permit to deduce the hydrodynamic equations of interacting particle systems from the underlying stochastic dynamics, i.e., to deduce the macroscopic behavior of the system from the microscopic interaction among particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Comments and References

  • Morrey, C.B. (1955): On the derivation of the equation of hydrodynamics from statistical mechanics. Comm. Pure Appl. Math. 8, 279–326

    MathSciNet  MATH  Google Scholar 

  • Dobrushin, R.L., Siegmund-Schultze, R. (1982): The hydrodynamic limit for systems of particles with independent evolution. Math. Nachr. 105, 199–224

    Article  MathSciNet  Google Scholar 

  • Rost, H. (1981): Nonequilibrium behavior of many particle systems: density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58, 41–53

    Article  MathSciNet  MATH  Google Scholar 

  • Galves, A., Kipnis, C., Marchioro, C., Presutti, E. (1981): Nonequilibrium measures which exhibit a temperature gradient: study of a model. Commun. Math. Phys. 81, 121–147

    Article  MathSciNet  Google Scholar 

  • De Masi, A., Ianiro, N., Presutti, E. (1982): Small deviations from local equilibrium for a process which exhibits hydrodynamical behavior. I. J. Stat. Phys. 29, 57–79

    Article  Google Scholar 

  • Ferrari, P.A., Presutti, E., Vares, M.E. (1987): Local equilibrium for a one dimensional zero range proces. Stoch. Proc. Appl. 26, 31–45

    Article  MathSciNet  MATH  Google Scholar 

  • Kipnis, C., Marchioro, C., Presutti, E. (1982): Heat flow in an exactly solvable model J. Stat. Phys. 27, 65–74

    Article  MathSciNet  Google Scholar 

  • De Masi, A., Ferrari, P. A., Ianiro, N., Presutti, E. (1982): Small deviations from local equilibrium for a process which exhibits hydrodynamical behavior II. J. Stat. Phys. 29, 81–93

    Article  Google Scholar 

  • Presutti, E., Spohn, H. (1983): Hydrodynamics of the voter model. Ann. Probab. 11, 867–875

    Article  MathSciNet  MATH  Google Scholar 

  • Malyshev, V.A., Manita, A.D., Petrova, E.N., Scacciatelli, E. (1995): Hydrodynamics of the weakly perturbed voter model. Markov Proc. Rel. Fields 1, 3–56

    MathSciNet  MATH  Google Scholar 

  • Greven, A. (1984): The hydrodynamical behavior of the coupled branching process, Ann. Probab. 12, 760–767

    Article  MathSciNet  MATH  Google Scholar 

  • Rost, H. (1984): Diffusion de sphères dures dans la droite réelle: comportement macroscopique et équilibre local. In J. P. Azéma and M. Yor, editors, Séminaire de Probabilités XVIII. Volume 1059 of Lecture Notes in Mathematics, 127–143. Springer-Verlag, Berlin

    Chapter  Google Scholar 

  • Fritz, J. (1987a): On the hydrodynamic limit of a one dimensional Ginzburg—Landau lattice model: the a priori bounds. J. Stat. Phys. 47, 551–572

    Article  MathSciNet  MATH  Google Scholar 

  • Fritz, J. (1987b): On the hydrodynamic limit of a scalar Ginzburg—Landau Lattice model: the resolvent approach. In, G. Papanicolaou, editor, Hydrodynamic behaviour and interacting particle systems, volume 9 of IMA volumes in in Mathematics, pages 75–97. Springer-Verlag, New York

    Google Scholar 

  • Fritz, J. (1989a): On the hydrodynamic limit of a Ginzburg—Landau model. The law of large numbers in arbitrary dimensions. Probab. Th. Rel. Fields 81, 291–318

    Article  MathSciNet  MATH  Google Scholar 

  • Funaki, T. (1989a): The hydrodynamical limit for a scalar Ginzburg—Landau model on R. In M. Métivier and S. Watanabe, editors, Stochastic Analysis, Lecture Notes in Mathematics 1322, pages 28–36, Springer-Verlag, Berlin

    Google Scholar 

  • Funaki, T. (1989b): Derivation of the hydrodynamical equation for a one—dimensional Ginzburg—Landau model. Probab. Th. Rel. Fields 82, 39–93

    Article  MathSciNet  MATH  Google Scholar 

  • Boldrighini, C., Dobrushin, R.L., Suhov, Yu.M. (1983): One—dimensional hard rod caricature of hydrodynamics. J. Stat. Phys. 31, 577–616

    Article  Google Scholar 

  • Dobrushin, R.L., Pellegrinotti, A., Suhov, Yu.M., Triolo, L. (1986): One dimensional harmonic lattice caricature of hydrodynamics. J. Stat. Phys. 43, 571–607

    Article  MathSciNet  MATH  Google Scholar 

  • Dobrushin, R.L., Pellegrinotti, A., Suhov, Yu.M., Triolo, L. (1988): One dimensional harmonic lattice caricature of hydrodynamics: second approximation. J. Stat. Phys. 52, 423–439

    Article  MathSciNet  MATH  Google Scholar 

  • Dobrushin, R.L., Pellegrinotti, A., Suhov, Yu.M. (1990): One dimensional harmonic lattice caricature of hydrodynamics: a higher correction. J. Stat. Phys. 61, 387–402

    Article  MathSciNet  Google Scholar 

  • Fritz, J. (1982): Local stability and hydrodynamical limit of Spitzer’s one—dimensional lattice model. Commun. Math. Phys. 86, 363–373

    Article  MathSciNet  MATH  Google Scholar 

  • Fritz, J. (1985): On the asymptotic behavior of Spitzer’s model for evolution of one—dimensional point systems. J. Stat. Phys. 38, 615–645

    Article  MathSciNet  MATH  Google Scholar 

  • Spohn, H. (1991): Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Spohn, H. (1993): Interface motion in models with stochastic dynamics. J. Stat. Phys. 71, 1081–1132

    Article  MathSciNet  MATH  Google Scholar 

  • De Masi, A., Presutti, E. (1991): Mathematical methods for hydrodynamic limits, volume 1501 of Lecture Notes in Mathematics, Springer-Verlag, New York

    Google Scholar 

  • Lebowitz, J.L., Spohn, H. (1983): On the time evolution of macroscopic systems. Comm. Pure Appl. Math. 36, 595–613

    MathSciNet  Google Scholar 

  • Presutti, E. (1987): Collective phenomena in stochastic particle systems. In S. Albeverio, Ph. Blanchard and L. Streit, editors, Stochastic Processes — Mathematics and Physics II. Volume 1250 of Lecture Notes in Mathematics, pages 195–232, Springer-Verlag, Berlin

    Google Scholar 

  • Boldrighini, C., De Masi, A., Pellegrinotti, A., Presutti, E. (1987): Collective phenomena in interacting particle systems. Stoch. Proc. Appl. 25, 137–152

    Article  MATH  Google Scholar 

  • Lebowitz, J.L., Presutti, E., Spohn, H. (1988): Microscopic models of hydrodynamic behavior. J. Stat. Phys. 51, 841–862

    Article  MathSciNet  MATH  Google Scholar 

  • Presutti, E. (1997): Hydrodynamics in particle systems. In C. Cercignani, G. Jona—Lasinio, G. Parisi and L. A. Radicati di Brozolo, editors, Boltzmann’s Legacy 150 Years After His Birth. Volume 131 of Atti dei convegni Licei, pages 189–207, Accademia Nazionale dei Lincei, Roma

    Google Scholar 

  • Jensen, L., Yau, H.T. (1997): Hydrodynamical Scaling Limits of Simple Exclusion Models. To appear in Park City-IAS Summer School Lecture Series.

    Google Scholar 

  • Hammersley, J.M. (1972): A few seedlings of research. Proceedings of the 6th Berkeley symposium in Mathematics, Statistics and Probability, pages 345–394, University of California Press.

    Google Scholar 

  • Aldous, D.J., Diaconis, P. (1995): Hammersley’s interacting particle process and longest increasing subsequences. Probab. Th. Rel. Fields 103, 199–213

    Article  MathSciNet  MATH  Google Scholar 

  • Seppäläinen, T. (1996a): A microscopic model for the Burgers equation and longest increasing subsequences. Electronic J. Probab. 1, 1–51

    MATH  Google Scholar 

  • Seppäläinen, T. (1997b): Increasing sequences of independent points on the planar lattice. Ann. Appl. Probab. 7, 886–898

    Article  MathSciNet  MATH  Google Scholar 

  • De Masi, A., Ferrari, P. A., Lebowitz, J.L. (1986): Reaction-diffusion equations for interacting particle systems, J. Stat. Phys. 44, 589–644

    Article  MATH  Google Scholar 

  • Noble, C. (1992): Equilibrium behavior of the sexual reproduction process with rapid diffusion. Ann. Probab. 20, 724–745

    Article  MathSciNet  MATH  Google Scholar 

  • Durrett, R., Neuhauser, C. (1994): Particle systems and reaction—diffusion equations. Ann. Probab. 22, 289–333

    Article  MathSciNet  MATH  Google Scholar 

  • Maes, C. (1990): Kinetic limit of a conservative lattice gas dynamics showing long range correlations. J. Stat. Phys. 61, 667–681

    Article  MathSciNet  Google Scholar 

  • Landim, C. (1992): Occupation time large deviations for the symmetric simple exclusion process. Ann. Probab. 20, 206–231

    Article  MathSciNet  MATH  Google Scholar 

  • Benois, O. (1996): Large deviations for the occupation times of independent particle systems. Ann. Appl. Probab. 6, 269–296

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, J.T., Griffeath, D. (1984): Large deviation for Poisson systems of independent random walks. Z. Wahrsch. Verw. Gebiete 66, 543–558

    Article  MathSciNet  MATH  Google Scholar 

  • Bramson, M., Cox, J.T., Griffeath, D. (1988): Occupation time large deviations of the voter model. Probab. Th. Rel. Fields 73, 613–625

    Article  MathSciNet  Google Scholar 

  • Jockusch, W., Propp, J., Shor, P. (1995): Random domino tillings and the artic circle theorem, Ann. Inst. H. Poincaré, Physique Théorique 55, 751–758

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kipnis, C., Landim, C. (1999). An Introductory Example: Independent Random Walks. In: Scaling Limits of Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03752-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03752-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08444-7

  • Online ISBN: 978-3-662-03752-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics