Skip to main content

Degradation of Dissolved Organic Matter in Humic Waters by Bacteria

  • Chapter
Book cover Aquatic Humic Substances

Part of the book series: Ecological Studies ((ECOLSTUD,volume 133))

Abstract

The standing stock of dissolved organic matter (DOM) in surface waters depends on import, washout, indigenous primary production and processes of internal loss, including abiotic mineralization (particularly photooxidation), microbial mineralization and flocculation followed by sedimentation. The DOM in such waters is a complex mixture of different compounds. Some of these, such as free and combined amino acids and carbohydrates, have in many cases been identified and quantified. Although the bulk of the DOM has not been described in detail, a major constituent of it is generally humic matter. The composition of the fraction of the DOM that is utilized and mineralized by bacteria, however, is poorly known. This chapter concerns both the importance of microbial utilization for the dynamics of DOM, and the importance of recalcitrant DOM as a substrate for microbial growth in humic waters. The impact of such factors as flocculation and photochemical processes upon the microbial degradation will also be discussed. The further consequences which the production of bacterial biomass can have on the structure and function of the ecosystem through the consumption of DOM will be considered as well, but is elucidated in greater detail in Chapter 11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard B, Borén H, Pettersson C, Zhang G (1994) Degradation of humic substances by UV radiation. Environ Int 20: 97–101

    CAS  Google Scholar 

  • Amon RMW, Benner R (1994) Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature 369: 549–551

    CAS  Google Scholar 

  • Amon RMW, Benner R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41: 41–51

    CAS  Google Scholar 

  • Antia NJ, Harrison PJ, Oliveira L (1991) The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia 30: 1–89

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil L-A, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10: 257–263

    Google Scholar 

  • Backlund P (1992) Degradation of aquatic humic material by ultraviolet light. Chemosphere 25: 1869–1878

    CAS  Google Scholar 

  • Bédard C, Knowles R (1991) Hypolimnetic 02 consumption, denitrification, and methanogenesis in a thermally stratified lake. Can J Fish Aquat Sci 48: 1048–1054

    Google Scholar 

  • Bertilsson S, Allard B (1996) Sequential photochemical and microbial degradation of refractory dissolved organic matter in a humic freshwater system. Arch Hydrobiol 48: 133–141

    CAS  Google Scholar 

  • Bianchi TS, Freer ME, Wetzel RG (1996) Temporal and spatial variability, and the role of dissolved organic carbon (DOC) in methane fluxes from Sabine River floodplain (southeast Texas, U.S.A. ). Arch Hydrobiol 136: 261–287

    Google Scholar 

  • Boon PI, Mitchell A (1995) Methanogenesis in the sediments of an Australian freshwater wetland: comparison with aerobic decay, and factors controlling methanogenesis. FEMS Microbiol Ecol 18: 175–190

    CAS  Google Scholar 

  • Bowling LC, Salonen K (1990) Heat uptake and resistance to mixing in small humic forest lakes in southern Finland. Aust J Mar Freshw Res 41: 747–760

    Google Scholar 

  • Brophy JE, Carlson DJ (1989) Production of biologically refractory dissolved organic carbon by natural seawater microbial populations. Deep Sea Res 36: 497–507

    CAS  Google Scholar 

  • Burnison BK, Leppard GG (1983) Isolation of colloidal fibrils from lake water by physical separation techniques. Can J Fish Aquat Sci 40: 373–381

    Google Scholar 

  • Bushaw KL, Zepp RG, Tarr MA, Schulz-Jander D, Bourbonniere RA, Hodson RE, Miller WL, Bronk DA, Moran MA (1996) Photochemical release of biologically available nitrogen from dissolved organic matter. Nature 381: 404–407

    CAS  Google Scholar 

  • Carlson DJ, Mayer ML, Brann ML, Mague TH (1985) Binding of monomeric organic compounds to macromolecular dissolved organic matter in seawater. Mar Chem 16: 141–153

    CAS  Google Scholar 

  • Carlsson P, Segatto AZ, Granéli E (1993) Nitrogen bound to humic matter of terrestrial origin–a nitrogen pool for coastal phytoplankton. Mar Ecol Prog Ser 97: 105–116

    CAS  Google Scholar 

  • Carlsson P, Granéli E, Tester P, Boni L (1995) Influences of river transported humic substances and copepod grazing on a coastal plankton community. Mar Ecol Prog Ser 127: 213–221

    CAS  Google Scholar 

  • Cole JJ, Pace ML (1995) Bacterial secondary production in oxic and anoxic freshwaters. Limnol Oceanogr 40: 1019–1027

    Google Scholar 

  • Corpe WA, Jensen TE (1992) An electron microscopic study of picoplanktonic organisms from a small lake. Microb Ecol 24: 181–197

    Google Scholar 

  • Cotner JB, Heath RT (1990) Iron redox effects on photosensitive phosphorus release from dissolved humic materials. Limnol Oceanogr 35: 1175–1181

    CAS  Google Scholar 

  • Coveney MF, Wetzel RG (1992) Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures. Appl Environ Microbiol 58: 150–156

    PubMed  CAS  Google Scholar 

  • De Haan H (1974) Effect of a fulvic acid fraction on the growth of a Pseudomonas from Tjeukemeer (the Netherlands). Freshw Biol 4: 301–310

    Google Scholar 

  • De Haan H (1977) Effect of benzoate on microbial decomposition of fulvic acids in Tjeukemeer (The Netherlands). Limnol Oceanogr 22: 38–44

    Google Scholar 

  • De Haan H, Jones RI, Salonen K (1987) Does ionic strength affect the configuration of aquatic humic substances, as indicated by gel filtration? Freshw Biol 17: 453–459

    Google Scholar 

  • De Haan H, Jones RI, Salonen K (1990) Abiotic transformations of iron and phosphate in humic water revealed by double isotope labeling and gel filtration. Limnol Oceanogr 35: 491–497

    Google Scholar 

  • Del Giorgio PA, Gasol JM (1995) Biomass distribution in freshwater plankton communities. Am Nat 146: 135–152

    Google Scholar 

  • Del Giorgio PA, Peters RH (1993) Balance between phytoplankton production and plankton respiration in lakes. Can J Fish Aquat Sci 50: 282–289

    Google Scholar 

  • Egli T (1996) The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. Adv Microb Ecol 14: 305–386

    Google Scholar 

  • Fallon RD, Harrits S, Hanson RS, Brock TD (1980) The role of methane in internal carbon cy-cling in Lake Mendota during summer stratification. Limnol Oceanogr 25: 357–360

    CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press,Oxford

    Google Scholar 

  • Francko DA, Heath RT (1979) Functionally distinct classes of complex phosphorus in lake water. Limnol Oceanogr 24: 463–473

    CAS  Google Scholar 

  • Francko DA, Heath RT (1982) UV-sensitive complex phosphorus: association with dissolved humic material and iron in a bog lake. Limnol Oceanogr 27: 564–569

    CAS  Google Scholar 

  • Geller A (1985) Degradation and formation of refractory DOM by bacteria during simultaneous growth on labile substrates and persistent lake water constituents. Schweiz Z Hydrol 47: 27–44

    CAS  Google Scholar 

  • Geller A (1986) Comparison of mechanisms enhancing biodegradability of refractory lake water constituents. Limnol Oceanogr 31: 755–764

    CAS  Google Scholar 

  • Gjessing ET, Källgvist T (1991) Algicidal and chemical effect of UV-radiation of water containing humic substances. Water Res 25: 491–494

    CAS  Google Scholar 

  • Granéli E, Moreira MO (1990) Effects of river water of different origin on the growth of marine dinoflagellates and diatoms in laboratory cultures. J Exp Mar Biol Ecol 136: 89–106

    Google Scholar 

  • Hamilton SK, Sippel SJ, Melack JM (1995) Oxygen depletion and carbon dioxide and methane production in waters of the Pantanal wetland of Brazil. Biogeochemistry 30: 115–141

    CAS  Google Scholar 

  • Happell JD, Chanton JP (1993) Carbon remineralization in a north Florida swamp forest: effects of water level on the pathways and rates of soil organic matter decomposition. Global Biogeochem Cycles 7: 475–490

    CAS  Google Scholar 

  • Harvey GR, Boran DA, Chesal LA, Tokar JM (1983) The structure of marine fulvic and humic acids. Mar Chem 12: 119–132

    CAS  Google Scholar 

  • Hessen DO (1985) The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microbiol Ecol 31: 215–223

    CAS  Google Scholar 

  • Hessen DO, Nygaard K (1992) Bacterial transfer of methane and detritus: implications for the pelagic carbon budget and gaseous release. Arch Hydrobiol 37: 139–148

    CAS  Google Scholar 

  • Hessen DO, Andersen T, Lyche A (1990) Carbon metabolism in a humic lake; pool sizes and cycling through zooplankton. Limnol Oceanogr 35: 84–99

    CAS  Google Scholar 

  • Hessen DO, Nygaard K, Salonen K, Vähätalo A (1994) The effect of substrate stoichiometry on microbial activity and carbon degradation in humic lakes. Environ Int 20: 67–76

    CAS  Google Scholar 

  • Hobbie JE (1988) A comparison of the ecology of planktonic bacteria in fresh and salt water. Limnol Oceanogr 33: 750–764

    CAS  Google Scholar 

  • Hollibaugh JT, Azam F (1983) Microbial degradation of dissolved proteins in seawater. Limnol Oceanogr 28: 1104–1116

    CAS  Google Scholar 

  • Ishiwatari R (1992) Macromolecular material (humic substances) in the water column and sediments. Mar Chem 39: 151–166

    CAS  Google Scholar 

  • Jones RI, Salonen K, De Haan H (1988) Phosphorus transformations in the epilimnion of humic lakes: abiotic interactions between dissolved humic materials and phosphate. Freshw Biol 19: 357–369

    CAS  Google Scholar 

  • Jorgensen NOG, Kroer N, Coffin RB, Yang XH, Lee C (1993) Dissolved free amino acids, combined amino acids, and DNA as sources of carbon and nitrogen to marine bacteria. Mar Ecol Prog Ser 98: 135–148

    Google Scholar 

  • Jorgensen NOG, Kroer N, Coffin RB (1994) Utilization of dissolved nitrogen by heterotrophic bacterioplankton: effects of substrate C/N ratio. Appl Environ Microbiol 60: 4124–4133

    PubMed  CAS  Google Scholar 

  • Jumars PA, Pentry DL, Baross JA, Perry MJ, Frost BW (1989) Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion and absorption in animals. Deep Sea Res 36: 483–496

    CAS  Google Scholar 

  • Kaiser E, Herndl GJ (1997) Rapid recovery of marine bacterioplankton activity after inhibition by UV radiation in coastal waters. Appl Environ Microbiol 63: 4026–4031

    PubMed  CAS  Google Scholar 

  • Karentz D, Bothwell ML, Coffin RB, Hanson A, Herndl GJ, Kilham SS, Lesser MP, Lindell M, Moeller RE, Morris DP, Neale PJ, Sanders RW, Weiler CS, Wetzel RG (1994) Impact of UV-B radiation on pelagic freshwater ecosystems: report of working group on bacteria and phytoplankton. Arch Hydrobiol Beih 43: 31–69

    Google Scholar 

  • Keil RG, Kirchman DL (1994) Abiotic transformation of labile protein to refractory protein in sea water. Mar Chem 45: 187–196

    CAS  Google Scholar 

  • Kepkay PE (1994) Particle aggregation and the biological reactivity of colloids. Mar Ecol Prog Ser 109: 293–304

    Google Scholar 

  • Kepkay PE, Johnson BD (1989) Coagulation on bubbles allows the microbial respiration of oceanic dissolved organic carbon. Nature 385: 63–65

    Google Scholar 

  • Kieber DJ, Mopper K (1987) Photochemical formation of glyoxylic and pyruvic acids in seawater. Mar Chem 21: 135–149

    CAS  Google Scholar 

  • Kieber DJ, McDaniel J, Mopper K (1989) Photochemical source of biological substrates in sea water: implications for carbon cycling. Nature 341: 637–639

    CAS  Google Scholar 

  • Kieber DJ, Zhou X, Mopper K (1990) Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters: fate of riverine carbon in the sea. Limnol Oceanogr 35: 1503–1515

    CAS  Google Scholar 

  • Killops SD, Killops VJ (1993) An introduction to organic geochemistry. Longman, London

    Google Scholar 

  • Koike I, Hara S, Terauchi K, Kogure K (1990) Role of sub-micrometre particles in the ocean. Nature: 242–244

    Google Scholar 

  • Kortelainen P (1993) Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Can J Aquat Sci 50: 1477–1483

    CAS  Google Scholar 

  • Kroer N, Jorgensen NOG, Coffin RB (1994) Utilization of dissolved nitrogen by heterotrophic bacterioplankton: a comparison of three ecosystems. Appl Environ Microbiol 60: 4116–4123

    PubMed  CAS  Google Scholar 

  • Krumholz LR, Hollenback JL, Roskes SJ, Ringelberg DB (1995) Methanogenesis and methano-trophy within a Sphagnum peatland. FEMS Microbiol Ecol 18: 215–224

    CAS  Google Scholar 

  • Lara R, Thomas DN (1995) Formation of recalcitrant organic matter: humification dynamics of algal derived dissolved organic carbon and its hydrophobic fractions. Mar Chem 51: 193–199

    CAS  Google Scholar 

  • Larsson U, Hagström A (1979) Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar Bio! 52: 199–206

    Google Scholar 

  • Law AT, Button DK (1977) Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium. J Bacteriol 129: 115–123

    PubMed  CAS  Google Scholar 

  • Lee C, Wakeham SG (1992) Organic matter in the water column: future research challenges. Mar Chem 39: 95–118

    CAS  Google Scholar 

  • Leff LG, Meyer JL (1991) Biological availability of dissolved organic carbon along the Ogeechee River. Limnol Oceanogr 36: 315–323

    CAS  Google Scholar 

  • Lindell MJ, Granéli W, Tranvik LJ (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40: 195–199

    Google Scholar 

  • Lindell M, Granéli W, Tranvik L (1996) Impact of sunlight on bacterial growth in lakes of different humic content. Aquat Microb Ecol 11: 135–141

    Google Scholar 

  • Lovell CR, Konopka A (1985) Primary and bacterial production in two dimictic Indiana lakes. Appl Environ Microbiol 49: 485–491

    PubMed  CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382: 445–448

    CAS  Google Scholar 

  • McDonough RJ, Sanders RW, Porter KG, Kirchman DL (1986) Depth distribution of bacterial production in a stratified lake with an anoxic hypolimnion. Appl Environ Microbiol 52: 992–1000

    PubMed  CAS  Google Scholar 

  • Meyer JL, Edwards RT, Risley R (1987) Bacterial growth on dissolved organic matter from a blackwater river. Microb Ecol 13: 13–29

    CAS  Google Scholar 

  • Meyers-Schulte KJ, Hedges JI (1986) Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature 321: 61–63

    CAS  Google Scholar 

  • Middelboe M, Sendergaard M (1995) Concentration and bacterial utilization of sub-micron particles and dissolved organic carbon in lakes and a coastal area. Arch Hydrobiol 133: 129–147

    Google Scholar 

  • Mopper K, Stahovec WL (1986) Sources and sinks of low molecular weight organic carbonyl compounds in seawater. Mar Chem 19: 305–321

    CAS  Google Scholar 

  • Mopper K, Zhou X, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD (1991) Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353: 60–62

    CAS  Google Scholar 

  • Moran MA, Hodson RE (1990) Bacterial production on humic and non-humic components of dissolved organic carbon. Limnol Oceanogr 35: 1744–1756

    CAS  Google Scholar 

  • Moran MA, Hodson RE (1994) Support of bacterioplankton production by dissolved humic substances from three marine environments. Mar Ecol Prog Ser 110: 241–247

    CAS  Google Scholar 

  • Morris DP, Lewis WM (1992) Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado. Limnol Oceanogr 37: 1179–1192

    Google Scholar 

  • Münster U (1993) Concentrations and fluxes of organic carbon substrates in the aquatic environment. Antonie van Leeuwenhoek J Microbiol 63: 243–274

    PubMed  Google Scholar 

  • Nissenbaum A, Kaplan IR. (1972) Chemical and isotopic evidence for the in situ origin of marine humic substances. Limnol Oceanogr 17: 570–582

    CAS  Google Scholar 

  • Ochs CA, Cole JJ, Likens GE (1995) Spatial and temporal patterns of bacterioplankton biomass and production in an oligotrophic lake. J Plankton Res 17: 365–391

    Google Scholar 

  • Palenik B, Morel FMM (1990) Comparison of cell-surface L-amino acid oxidases from several marine phytoplankton. Mar Ecol Prog Ser 59: 195–201

    CAS  Google Scholar 

  • Pedrós-Alid C, Guerrero R (1993) Microbial ecology in Lake Cfso. Adv Microb Ecol 13: 389–398

    Google Scholar 

  • Pomeroy LR (1974) The ocean’s food web: a changing paradigm. Bioscience 9: 499–504

    Google Scholar 

  • Pulliam WM (1993) Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecol Monogr 63: 29–53

    Google Scholar 

  • Reitner B, Herzig A, Herndl GJ (1997) Role of ultraviolet-B radiation on photochemical and mi- crobial oxygen consumption in a humic-rich shallow lake. Limnol Oceanogr 42: 950–960

    CAS  Google Scholar 

  • Rudd JWM, Hamilton RD (1978) Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnol Oceanogr 23: 337–348

    CAS  Google Scholar 

  • Salonen K, Kolonen K, Arvola L (1983) Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101: 65–70

    Google Scholar 

  • Saunders G (1976) Decomposition in fresh water. In: Anderson J, Macfadyen A (eds) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell, Oxford

    Google Scholar 

  • Schindler DW, Bayley SE, Curtis PJ, Parker BR, Stainton MP, Kelly CA (1992) Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in Precambrian shield lakes. Hydrobiologia 229: 1–21

    CAS  Google Scholar 

  • Sherr EB (1988) Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335: 348–351

    CAS  Google Scholar 

  • Sondergaard M, Middelboe M (1995) A cross-system analysis of labile dissolved organic carbon. Mar Ecol Prog Ser 118: 283–294

    Google Scholar 

  • Stewart AJ, Wetzel RG (1981) Dissolved humic materials: photodegradation, sediment effects, and reactivity with phosphate and calcium carbonate precipitation. Arch Hydrobiol 92: 265–286

    CAS  Google Scholar 

  • Strome DJ, Miller MC (1978) Photolytic changes in dissolved humic substances. Verh Int Verein Limnol 20: 1248–1254

    Google Scholar 

  • Stuermer DH, Harvey GR (1974) Humic substances from seawater. Nature 250: 480–481

    CAS  Google Scholar 

  • Sun L, Perdue EM, Meyer JL, Weis J (1997) Using elemental composition to predict bioavailabil-ity of dissolved organic matter in a Georgia river. Limnol Oceanogr 42: 714–721

    CAS  Google Scholar 

  • Sunda WG, Kieber DJ (1994) Oxidation of humic substances by manganese oxides yields low- molecular-weight organic substrates. Nature 367: 62–64

    CAS  Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. Junk, Boston

    Google Scholar 

  • Thurman EM, Malcolm RL (1981) Preparative isolation of aquatic humic substances. Environ Sci Technol 15: 463–466

    PubMed  CAS  Google Scholar 

  • Toolan T, Wehr JD, Findlay S (1991) Inorganic phosphorus stimulation of bacterioplankton production in a mesoeutrophic lake. Appl Environ Microbiol 57: 2074–2078

    PubMed  CAS  Google Scholar 

  • Tranvik Li (1988) Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb Ecol 16: 311–322

    CAS  Google Scholar 

  • Tranvik LJ (1989) Bacterioplankton growth, grazing mortality, and quantitative relationship to primary production in a humic and a clearwater lake. J Plankton Res 11: 985–1000

    Google Scholar 

  • Tranvik Li (1990) Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl Environ Microbiol 56: 1672–1677

    Google Scholar 

  • Tranvik LJ (1992) Allochthonous organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229: 107–114

    CAS  Google Scholar 

  • Tranvik LJ (1993) Microbial transformation of labile dissolved organic matter into humic-like matter in seawater. FEMS Microbiol Ecol 12: 177–183

    CAS  Google Scholar 

  • Tranvik LJ (1994a) Effects of colloidal organic matter on the growth of bacteria and protists in lake water. Limnol Oceanogr 39: 1276–1285

    CAS  Google Scholar 

  • Tranvik Li (1994b) Colloidal and dissolved organic matter excreted by a mixotrophic flagellate during bacterivory and autotrophy. Appl Environ Microbiol 60: 1884–1888

    Google Scholar 

  • Tranvik Li, Jorgensen NOG (1995) Colloidal and dissolved organic matter in lake water: carbohydrate and amino acid composition, and ability to support bacterial growth. Biogeochemistry 30: 77–97

    Google Scholar 

  • Tranvik LJ, Kokalj S (1998) Decreased biodegradability of algal DOC due to interactive effects of UV radiation and humic matter. Aquat Microb Ecol 32, in press

    Google Scholar 

  • Tranvik LJ, Sieburth J McN (1989) Effects of flocculated humic matter on free and attached pelagic microorganisms. Limnol. Oceanogr. 34: 688–699

    Google Scholar 

  • Tranvik LJ,. Granéli W, Gahnström G (1994) Microbial activity in acidified and limed humic lakes. Can J Fish Aquat Sci 51: 2529–2536

    Google Scholar 

  • Turk V, Rehnstam A-S, Lundberg E, Hagström A (1993) Release of bacterial DNA by marine nanoflagellates, an intermediate step in phosphorus regeneration. Appl Environ Microbiol 58: 3744–3750

    Google Scholar 

  • Wells ML, Goldberg ED (1991) Occurrence of small colloids in sea water. Nature 353: 342–344

    CAS  Google Scholar 

  • Westermann P (1993) Wetland and swamp microbiology. In: Ford TE (ed) Aquatic microbiology–an ecological approach. Blackwell, Boston, pp 215–238

    Google Scholar 

  • Wetzel RG (1983) Limnology. Saunders, Philadelphia

    Google Scholar 

  • Wetzel RG (1984) Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bull Mar Sci 35: 503–509

    Google Scholar 

  • Wetzel RG (1992) Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198

    CAS  Google Scholar 

  • Wetzel RG (1995) Death, detritus, and energy flow in aquatic ecosystems. Freshw Biol 33: 83–89

    Google Scholar 

  • Wetzel RG, Hatcher PG, Bianchi TS (1995) Natural photolysis of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Oceanogr 40: 1369–1380

    CAS  Google Scholar 

  • Williams PJLeB (1981) Incorporation of microheterotrophic processes into the classical para-digm of the planktonic food web. Kieler Meeresforsch Sonderh 5: 1–28

    Google Scholar 

  • Williams PM, Druffel ERM (1987) Radiocarbon in dissolved organic carbon in the North Pacific Ocean. Nature 330: 246–248

    CAS  Google Scholar 

  • Zweifel UL, Norrman B, Hagström A (1993) Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients. Mar Ecol Prog Ser 101: 23–32

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tranvik, L.J. (1998). Degradation of Dissolved Organic Matter in Humic Waters by Bacteria. In: Hessen, D.O., Tranvik, L.J. (eds) Aquatic Humic Substances. Ecological Studies, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03736-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03736-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08362-4

  • Online ISBN: 978-3-662-03736-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics