Skip to main content

Part of the book series: NATO ASI Series ((NATO ASI F,volume 161))

Summary

The motion of flexible bodies in multibody systems can be represented in many applications as a superposition of a large reference motion and small deformations, which allows linearisation in the deformation variables. The linearisation procedure requires a careful analysis of geometric stiffening. The consideration of the effect is discussed for general flexible structures here including theoretical background, computer implementation and demonstration of the necessity of its consideration in specific examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Botz, M. (1992): Zur Dynamik von Mehrkörpersystemen mit elastischen Balkeri, Technische Hochschule Darmstadt, Fachbereich Mechanik, Dissertation.

    Google Scholar 

  • Braune, W. and Fischer, O. (1889): Über den Schwerpunkt des menschlichen Körpers mit Rücksicht auf die Ausrüstung des deutschen Infanteristen. Abh. d. königl. sächs. Gesellschaft der Wissenschaften, 26, pp. 560–672.

    Google Scholar 

  • Bremer, H. (1983): Kinetik starr-elastischer Mehrkörpersysteme. Fortschr. Ber. VDI-Z, Vol. 53(11), VDI-Verlag, Düsseldorf.

    Google Scholar 

  • Bremer, H. and Pfeiffer, F. (1992): Elastische Mehrkörpersysteme. Teubner Studienbücher, Mechanik, B. G. Teubner, Stuttgart.

    Google Scholar 

  • Coddington, E. A. and Levinson, N. (1955): Theory of Ordinary Differential Equations. McGraw-Hill Book Company, New York.

    MATH  Google Scholar 

  • v. Dombrowski, S. (1997): Modellierung von Balken bei großen Verformungen für ein kraftreflektierendes Eingabegerät, Universität Stuttgart, Diplomarbeit.

    Google Scholar 

  • Eichberger, A. (1993): Simulation von Mehrkörpersystemen auf parallelen Rechnerarchitekturen, Universität-Gesamthochschule Duisburg, Fachbereich Maschinenbau, Dissertation.

    Google Scholar 

  • Eichberger, A. (1994): Transputer-Based Multibody System Dynamic Simulation, Part I: The Residual Algorithm — A Modified Inverse Dynamic Formulation, Part II: Parallel Implementation — Results. Mechanics of Structures and Machines, 22(2), pp. 211–261.

    Article  MathSciNet  Google Scholar 

  • Eichberger, A., Führer, C., and Schwertassek, R. (1994): The Benefits of Parallel Multibody Simulation. Intl. Journal for Numerical Methods in Engineering, 37, pp. 1557–1572.

    Article  MATH  Google Scholar 

  • Fischer, O. (1906): Theoretische Grundlagen für eine Mechanik der lebenden Körper. B.G. Teubner, Leipzig.

    MATH  Google Scholar 

  • Fischer, O. (1907): Kinematik organischer Gelenke. F. Vieweg, Braunschweig.

    MATH  Google Scholar 

  • Föppl, A. (1900): Vorlesungen über Technische Mechanik, 3. Band, Festigkeitslehre. B. G. Teubner, Leipzig.

    Google Scholar 

  • Garcia de Jalön, J. and Bayo, E. (1994): Kinematic and Dynamic Simulation of Multibody Systems, The Real-Time Challenge. Mechanical Engineering Series, ed. F. F. Ling, Springer-Verlag, New York.

    Book  Google Scholar 

  • Gaul, L., Lenz, J., and Sachau, D. (1997): Active Damping of Space Structures by Contact Pressure Control in Joints, 15th Intl. Modal Analysis Conf. (IMAC), Orlando, Florida.

    Google Scholar 

  • Haug, E. J. (1989): Computer-Aided Kinematics and Dynamics of Mechanical Systems, Volume I: Basic Methods. Allyn and Bacon, Boston.

    Google Scholar 

  • Heisig, G. (1993): Zum statischen und dynamischen Verhalten von Tiefbohrsträngen in räumlich gekrümmten Bohrlöchern, Technische Universität Braunschweig, Dissertation.

    Google Scholar 

  • Hodges, D. H. and Ormiston, R. A. (1980): On the Nonlinear Deformation Geometry of Euler-Bernoulli Beams, NASA, TP 1566.

    Google Scholar 

  • Hodges, D. H. (1985): Nonlinear Equations for Dynamics of Pretwisted Beams Undergoing Small Strains and Large Rotations, NASA, TP 2470.

    Google Scholar 

  • Houbolt, J. C. and Brooks, G. W. (1957): Differential Equations of Motion for Combined Flapwise Bending, NASA, TN 3905.

    Google Scholar 

  • Huston, R. L. (1990): Multibody Dynamics. Butterworth-Heinemann, Boston.

    Google Scholar 

  • Kane, T. R., Ryan, R. R., and Banerjee, A. K. (1987): Dynamics of a Cantilever Beam Attached to a Moving Base. J. Guidance, Control, and Dynamics, 10(2), pp. 139–151.

    Article  Google Scholar 

  • Knothe, K. and Wessels, H. (1991): Finite Elemente. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Kortüm, W., Sachau, D., and Schwertassek, R. (1995): Analysis and Design of Flexible and Controlled Multibody Systems with SIMPACK, Paper IAF-95-A.4.04, 46th Intl. Astron. Congress, Oslo, Norway.

    Google Scholar 

  • Likins, P. (1989): Robert E. Roberson: A Personal Tribute. Mech. Struct. & Mach., 17(2), pp. 131–133.

    Article  Google Scholar 

  • Love, A. E. H. (1944): A Treatise on the Mathematical Theory of Elasticity. First American Printing of the Fourth Edition 1927, Dover Publications, New York.

    MATH  Google Scholar 

  • Man, G. K. and Laskin, R. A. (1988): Proc. of the Workshop on Multibody Simulation, JPL, Pasadena, Report D-5190.

    Google Scholar 

  • Nayfeh, A. H. and Mook, D. T. (1979): Nonlinear Oscillations. John Wiley∓Sons.

    MATH  Google Scholar 

  • Nikravesh, P. E. (1988): Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Otter, M. et al. (1993): An Object Oriented Data Model for Multibody Systems, in Proc. Int. Symp. on Advanced Multibody System Dynamics, (W. Schiehlen, ed.), Kluwer Acad. Publ., pp. 19–48.

    Chapter  Google Scholar 

  • Roberson, R. E. (1977): Computer-oriented dynamic modeling of spacecraft: historical evolution of Eulerian multibody formalisms since 1750, IAF-Paper 77-A 11, 28th International Astronautical Congress, Prag.

    Google Scholar 

  • Roberson, R. E. and Schwertassek, R. (1988): Dynamics of Multibody Systems. Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Rulka, W. (1990): SIMPACK — A Computer Program for Simulations of Large-Motion Multibody Systems, in Multibody System Handbook, (W. Schiehlen, ed.), Springer-Verlag, Berlin, pp. 265–284.

    Chapter  Google Scholar 

  • Rulka, W. and Eichberger, A. (1993): SIMPACK: An Analysis and Design Tool for Mechanical Systems, in Multibody Computer Codes in Vehicle System Dynamics, (W. Kortüm and R. S. Sharp, ed.), Vol. 22, Supplement to Vehicle System Dynamics, Swets and Zeitlinger, Amsterdam, pp. 122–126.

    Google Scholar 

  • Ryan, R. R. (1987): Flexible Multibody Dynamics: Problems and Solutions, in Proc. of Workshop on Multibody Simulation, (G. K. Man and R. A. Laskin, eds.), Vol. I, (3), JPL D-5190, Pasadena, CA, pp. 103–190.

    Google Scholar 

  • Sachau, D. (1996): Berücksichtigung von Körperverformung und Fügestellen in der Mehrkörpersimulation mit Anwendung auf aktive Raumfahrtstrukturen, Universität Stuttgart, Dissertation.

    Google Scholar 

  • Sandlass, T. (1996): Herleitung aller geometrischen Steifigkeitsterme eines Bernoulli — Balkens und Implementierung im SIMPACK-Präprozessor BEAM, Universität Stuttgart, Studienarbeit.

    Google Scholar 

  • Schiehlen, W. (1986): Technische Dynamik. Teubner Studienbücher, Mechanik, B.G. Teubner, Stuttgart.

    Google Scholar 

  • Schwertassek, R. and Roberson, R. E. (1986): A Perspective on Computer-Oriented Multibody Dynamical Formalisms and their Implementations, in Dynamics of Multibody Systems, IUTAM/ IFToMM Symposium Udine 1985, (G. Bianchi and W. Schiehlen, eds.), Springer-Verlag, Berlin, pp. 261–273.

    Google Scholar 

  • Schwertassek, R. and Rulka, W. (1991): Aspects of Efficient and Reliable Multibody System Simulation, in Real-Time Integration Methods for Mechanical System Simulation, (E. J. Haug and R. C. Deyo, eds.), Springer-Verlag, Berlin, pp. 55–96.

    Google Scholar 

  • Schwertassek, R. (1994): Modellierung deformierbarer Körper in Mehrkörpersystemen, Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR), Institut für Robotik und Systemdynamik, Oberpfaffenhofen, Bericht IB 515–94-19.

    Google Scholar 

  • Schwertassek, R. (1995): On a Systematic Way to Compute Geometric Stiffness Terms in Multibody System Simulation, Paper AAS 95–391, AAS/AIAA Astrodynamics Specialist Conference, Halifax, Canada.

    Google Scholar 

  • Shabana, A. A. (1989): Dynamics of Multibody Systems. J. Wiley & Sons, New York.

    MATH  Google Scholar 

  • Shabana, A. A. (1996.a): An Absolute Nodal Coordinate Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies, Department of Mechanical Engineering, University of Illinois at Chicago, Techn. Report MBS96–1-UIC.

    Google Scholar 

  • Shabana, A. A. (1996.b): Incremental Finite Element Approach and Exact Rigid Body Inertia. ASME Journal of Mechanical Design, vol. 118(2), pp. 171–178.

    Article  Google Scholar 

  • Shabana, A. A. (1997): Flexible Multibody Dynamics: Review of Past and Recent Developments, to appear in Multibody Simulation.

    Google Scholar 

  • Shabana, A. A. and Schwertassek, R. (1997): Floating Frame of Reference Formulation and Definition of Nodal Coordinates, accepted for publication in Intl. J. of Non- Linear Mechanics.

    Google Scholar 

  • Simo, J. C. (1985): A Finite Strain Beam Formulation. Comp. Meth. Appl Mech. Eng., 49, pp. 55–70.

    Article  MATH  Google Scholar 

  • Simo, J. C. and Vu-Quoc, L. (1986): On the Dynamics of Flexible Beams under Large Overall Motions — The Plane Case, Parts I and II. J. Appl. Mech., 53, pp. 849–854 and 855–863.

    Article  MATH  Google Scholar 

  • Sorge, K. (1993): Mehrkörpersysteme mit starr-elastischen Subsystemen. Fortschr.- Ber. VDI, Reihe 11: Schwingungstechnik, Nr. 184, VDI-Verlag, Düsseldorf.

    Google Scholar 

  • Szabo, I. (1979): Geschichte der mechanischen Prinzipien. Birkhäuser-Verlag, Basel.

    MATH  Google Scholar 

  • Taylor, L. (1988): Proc. of the Workshop on Computational Aspects in the Control of Flexible Systems, NASA, TM-101578-Pt-l.

    Google Scholar 

  • Truckenbrodt, A. (1980): Bewegungsverhalten und Regelung hybrider Mehrkörpersysteme mit Anwendung auf Industrieroboter. Fortschr.-Ber. der VDI-Zeitschr., Reihe 8: Meß-, Steuerungs- und Regelungstechnik, Nr. 33, VDI-Verlag, Düsseldorf.

    Google Scholar 

  • Truesdell, C. (1964): Die Entwicklung des Drallsatzes. ZAMM, 44, pp. 149–158.

    Article  MathSciNet  MATH  Google Scholar 

  • Vereshchagin, A. F. (1974): Computer Simulation of the Dynamics of Complicated Mechanisms of Robot-Manipulators. Engineering Cybernetics, (6), pp. 65–70.

    Google Scholar 

  • Wallrapp, O. (1991): Simulation flexibler Mehrkörpersysteme bei Verwendung von FEM-Daten — Interface zwischen ANSYS und Mehrkörperprogrammen, ANSYS Users’ Meeting, CAD-FEM, Ebersberg.

    Google Scholar 

  • Wallrapp, O. (1993.a): Standard Input Data of Flexible Bodies for Multibody System Codes, DLR, German Aerospace Establishment, Institute for Robotics and System Dynamics, Oberpfaffenhofen, Report IB 515–93–04.

    Google Scholar 

  • Wallrapp, O. (1993.b): Standard Input Data of Flexible Members for Multibody System Codes, in Advanced Multibody System Dynamics — Simulation and Software Tools, (W. Schiehlen, ed.), Kluwer Academic Publishers, Dordrecht, pp. 445–450.

    Chapter  Google Scholar 

  • Wallrapp, O. (1994.a): BEAM — A Pre-Processor for Mode Shape Analysis of Straight Beam Structures and Generation of the SID File for MBS Codes, User’s Manual, Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR), Inst. Robotik und Systemdynamik, Oberpfaffenhofen, Report Version 3.0.

    Google Scholar 

  • Wallrapp, O. (1994.b): Standardization of Flexible Body Modeling in Multibody System Codes, Part I: Definition of Standard Input Data. Mechanics of Structures and Machines, 22(3), pp. 283–304.

    Article  MathSciNet  Google Scholar 

  • Wallrapp, O. and Sachau, D. (1994): Space Flight Dynamic Simulations Using Finite Element Analysis Results in Multibody System Codes, 2nd Intl. Conf. on Computational Structures Technology, Vol. Advances in Computational Mechanics, CIVIL-COMP Press, Athens, Greece.

    Google Scholar 

  • Weidenhammer, F. (1970): Gekoppelte Biegeschwingungen von Laufschaufeln im Fliehkraftfeld. Ing. Archiv, 39, pp. 281.

    Article  MATH  Google Scholar 

  • Wittenburg, J. (1977): Dynamics of Systems of Rigid Bodies. Leitfäden der angewandten Mathematik und Mechanik, ed. H. Görtier, Vol. 33, B. G. Teubner, Stuttgart.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwertassek, R. (1998). Flexible Bodies in Multibody Systems. In: Angeles, J., Zakhariev, E. (eds) Computational Methods in Mechanical Systems. NATO ASI Series, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03729-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03729-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08369-3

  • Online ISBN: 978-3-662-03729-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics