Discrete Symmetries



The group of all Lorentz transformations includes the proper continuous transformations already studied in previous chapters and the discrete transformations to be treated in this chapter. The latter class of transformations deals with space and time inversions as well as all operations formed by successive applications of a space or time inversion and a proper continuous transformation.


Decay Mode Orbital Angular Momentum Transformation Rule Baryon Number Discrete Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggestions for Further Reading

Analysis and demonstrations of nonconservation of parity

  1. Friedman, J. I. and Telegdi, V. L., Phys. Rev. 105 (1957) 1681ADSCrossRefGoogle Scholar
  2. Garwin, R. L., Lederman, L. M. and Weinrich, M., Phys. Rev. 105 (1957) 1415ADSCrossRefGoogle Scholar
  3. Lee, T. D. and Yang, C. N., Phys. Rev. 104 (1956) 254ADSCrossRefGoogle Scholar
  4. Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. and Hudson, R. P., Phys. Rev. 105 (1957) 1413ADSCrossRefGoogle Scholar

Time reversal

  1. Cohen-Tannoudji, G. and Jacob, M. Le temps et sa flèche (ed. by Klein, E. and Spiro, M. ). Editions Frontières, Gif-sur-Yvette 1994Google Scholar
  2. Schwinger, J., Phys. Rev. 82 (1951) 914MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. Wigner, E., Nachr. Akad. Wiss. Göttingen 32 (1932) 35;Google Scholar
  4. Wigner, E., Croup Theory and its Applications to Quantum Mechanics of Atomic Spectra. Academic Press, New York 1959Google Scholar

Charge conjugation

  1. Furry, W. H., Phys. Rev. 51 (1937) 125ADSCrossRefGoogle Scholar
  2. Kramers, H. A., Proc. Amst. Akad. Sci. 40 (1937) 814Google Scholar
  3. Pauli, W., Annales de l’Inst. Henri Poincaré 6 (1936) 137MathSciNetGoogle Scholar

CPT theorem

  1. Luders, G., Kgl. Danske Vidensk. Selsk. Mat: Fys. Medd. 28 (1954) no. 5; Ann. of Phys. 2 (1957) 1MathSciNetCrossRefGoogle Scholar
  2. Pauli, W., Niels Bohr and the Development of Physics. McGraw-Hill, New York 1955zbMATHGoogle Scholar
  3. Pauli, W., Nuovo Cimento 6 (1957) 204MathSciNetzbMATHCrossRefGoogle Scholar
  4. Schwinger, J., Phys. Rev. 82 (1951) 914; 91 (1951) 713Google Scholar
  5. Streater, R. F. and Wightman, A. S., PCT, Spin, Statistics, and All That. Benjamin, New York 1968Google Scholar

A collection of reports on experiments with background introductions

  1. Cahn, R. N. and Goldhaber, G., The Experimental Foundations of Particle Physics. Cambridge U. Press, Cambridge 1989Google Scholar

Data from

  1. Review of Particle Properties, Phys. Rev. D54 (1996) 1MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  1. 1.Physics DepartmentUniversité LavalSte-FoyCanada
  2. 2.Laboratoire de Physique Théorique et Hautes EnergiesUniversités Paris VI et VIIParis Cedex 05France

Personalised recommendations