Skip to main content

Activation of Progesterone and Androgen Receptors by Signal Transduction Pathways

  • Conference paper
Molecular Basis of Sex Hormone Receptor Function

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 24))

  • 59 Accesses

Abstract

Progesterone receptors (PR) and androgen receptors (AR) are members of the steroid/thyroid hormone superfamily of ligand-activated transcription factors (Evans 1988). In common with other members of the family, they contain carboxyl terminal hormone-binding domains, amino terminal regions that are important for transcriptional activation, and DNA-binding domains that are located between the hormone-binding domain and transactivation region (Fawell et al. 1990; Tsai and O’Malley 1994). Although these receptors are activated by their cognate ligands, recent studies have shown that PR and AR also respond to signal transduction pathways by enhancing their ligand-dependent response; in some cases, they are activated in the absence of hormone. The ability to respond to alternate signaling pathways in the absence of hormone is not a uniform characteristic of steroid receptor family members. All of the estrogen receptors tested appear to be responsive under some conditions (Smith et al. 1993; Ignar-Trowbridge et al. 1992; Aronica and Katzenellenbogen 1991). However, whereas chicken (Denner et al. 1990b) and rodent (Turgeon and Waring 1994) PR are responsive, the human PR is generally not responsive (Beck et al. 1992). In the case of the androgen receptor, it appears that the human receptor will respond to specific activation pathways (Culig et al. 1994; Nazareth and Weigel 1996), but the rat receptor is unresponsive (Ikonen et al. 1994; Reinikainen et al. 1996). Finally, the glucocorticoid receptor requires a ligand for activation (Nordeen et al. 1993). The mechanism by which these receptors can be activated in the absence of ligand is a topic of active research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allgood VE, Zhang Y, O’Malley BW, Weigel NL (1997) Analysis of chicken progesterone receptor function and phosphorylation using an adenovirus mediated procedure for high efficiency DNA transfer. Biochem 36 (1): 224–232

    Article  CAS  Google Scholar 

  • Apostolakis EM, Garai J, Clark JH, O’Malley BW (1996a) In vivo regulation of central nervous system progesterone receptors: cocaine induces steroid dependent behavior through dopamine transporter modulation of D5 receptors in rats. Mol Endocrinol 10: 1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Apostolakis EM, Garai J, Fox C, Smith CL, Watson SJ, Clark JH, O’Malley BW (1996b) Dopaminergic regulation of progesterone receptors: Brain D5 dopamine receptors mediate induction of lordosis by D1-like agonists in rats. J Neurosci 16 (6): 4823–4834

    PubMed  CAS  Google Scholar 

  • Aronica SM, Katzenellenbogen BS (1991) Progesterone receptor regulation in uterine cells: stimulation by estrogen, cyclic adenosine 3’,5’-monophosphate, and insulin-like growth factor I and suppression by antiestrogens and protein kinase inhibitors. Endocrinology 128: 2045–2052

    Article  PubMed  CAS  Google Scholar 

  • Bai W, Weigel NL (1996) Phosphorylation of Sere 1 in the chicken progesterone receptor modulates its transcriptional activity. J Biol Chem 271 (22): 12801–12806

    Article  PubMed  CAS  Google Scholar 

  • Bai W, Tullos S, Weigel NL (1994) Phosphorylation of Ser53o facilitates hormone-dependent transcriptional activation of the chicken progesterone receptor. Mol Endocrinol 8: 1465–1473

    Article  PubMed  CAS  Google Scholar 

  • Bai W, Rowan BG, Allgood VE, O’Malley BW, Weigel NL (1997) Differential phosphorylation of chicken progesterone receptor in hormone-dependent and ligand-independent activation. J Biol Chem 272: 10457–10463

    Article  PubMed  CAS  Google Scholar 

  • Beck CA, Weigel NL, Edwards DP (1992) Effects of hormone and cellular modulators of protein phosphorylation on transcriptional activity, DNA binding, and phosphorylation of human progesterone receptors. Mol Endocrinol 6: 607–620

    Google Scholar 

  • Beck CA, Weigel NL, Moyer ML, Nordeen SK, Edwards DP (1993) The progesterone antagonist RU486 acquires agonist activity upon stimulation of cAMP signaling pathways. Proc Natl Acad Sci USA 90: 4441–4445

    Article  PubMed  CAS  Google Scholar 

  • Conneely OM, Kettelberger DM, Tsai M-J, Schrader WT, O’Malley BW (1989) The chicken progesterone receptor A and B isoforms are products of an alternate translation initiation event. J Biol Chem 264: 14062–14064

    PubMed  CAS  Google Scholar 

  • Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, Bartsch G, Klocker H (1994) Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54: 5474–5478

    PubMed  CAS  Google Scholar 

  • Denner LA, Schrader WT, O’Malley BW, Weigel NL (1990a) Hormonal regulation and identification of chicken progesterone receptor phosphorylation sites. J Biol Chem 265: 16548–16555

    PubMed  CAS  Google Scholar 

  • Denner LA, Weigel NL, Maxwell BL, Schrader WT, O’Malley BW (1990b) Regulation of progesterone receptor-mediated transcription by phosphorylation. Science 250: 1740–1743

    Article  PubMed  CAS  Google Scholar 

  • de Ruiter PE, Teuwen R, Trapman J, Dijkema R, Brinkmann AO (1995) Synergism between androgens and protein kinase C on androgen-regulated gene expression. Mol Cell Endocrinol 110: R1 — R6

    Article  PubMed  Google Scholar 

  • Edwards DP, Weigel NL, Nordeen SK, Beck CA (1993) Modulators of cellular protein phosphorylation alter the trans-activation function of human progesterone receptor and the biological activity of progesterone antagonists. Breast Cancer Res Treatment 27: 41–56

    Article  CAS  Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240: 889–895

    Article  PubMed  CAS  Google Scholar 

  • Fawell SE, Lees JA, White R, Parker MG (1990) Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60: 953–962

    Article  PubMed  CAS  Google Scholar 

  • Gupta C, Chandorkar A, Nguyen AP (1996) Activation of androgen receptor in epidermal growth factor modulation of fetal mouse sexual differentiation. Mol Cell Endocrinol 123: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Ignar-Trowbridge DM, Nelson KG, Bidwell MC, Curtis SW, Washburn TF, Machlachlan JA, Korach KS (1992) Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci USA 89: 4658–4662

    Article  PubMed  CAS  Google Scholar 

  • Ikonen T, Palvimo JJ, Kallio PJ, Reinikainen P, Janne OA (1994) Stimulation of androgen-regulated transactivation by modulators of protein phosphorylation. Endocrinology 4: 1359–1366

    Article  Google Scholar 

  • Ilenchuk TT, Walters MR (1987) Rat uterine progesterone receptor analyzed by [3H]R5020 photoaffinity labeling: evidence that the A and B subunits are not equimolar. Endocrinology 120 (4): 1449–1456

    Article  PubMed  CAS  Google Scholar 

  • Ince BA, Montano MM, Katzenellenbogen BS (1994) Activation of transcriptionally inactive human estrogen receptors by cyclic adenosine 3’, 5’-monophosphate and ligands including antiestrogens. Mol Endocrinol 8: 1397–1406

    Article  PubMed  CAS  Google Scholar 

  • Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB (1997) The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 11: 693–705

    Article  PubMed  CAS  Google Scholar 

  • Jenster G, deRuiter PE, van der Korput AGM, Kuiper GGJM, Trapman J, Brinkmann AO (1994) Changes in the abundance of androgen receptor isotypes: effects of ligand treatment, glutamine-stretch variation, and mutation of putative phosphorylation sites. Biochemistry 33: 14064–14072

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Krust A, Turcotte B, Strupp U, Tora L, Gronemeyer H, Chambon P (1990) Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J 9: 1603–1614

    PubMed  CAS  Google Scholar 

  • Kazmi SMI, Visconti V, Plante RK, Ishaque A, Lau C (1993) Differential regulation of human progesterone receptor A and B form-mediated trans-activation by phosphorylation. Endocrinology 144: 1230–1238

    Article  Google Scholar 

  • Loosfelt H, Logeat F, Hai MTV, Milgrom E (1984) The rabbit progesterone receptor: evidence for a single steroid-binding subunit and characterization of receptor mRNA. J Biol Chem 259: 14196–14202

    PubMed  CAS  Google Scholar 

  • Mani SK, Allen JM, Clark JH, Blaustein JD, O’Malley BW (1994a) Convergent pathways for steroid hormone-and neurotransmitter-induced rat sexual behavior. Science 265: 1246–1249

    Article  PubMed  CAS  Google Scholar 

  • Mani SK, Blaustein JD, Allen JM, Law SW, O’Malley BW, Clark JH (1994b) Inhibition of rat sexual behavior by antisense oligonucleotides to the progesterone receptor. Endocrinology 135: 1409–1414

    Article  PubMed  CAS  Google Scholar 

  • Mani S, Allen JMC, Lydon JP, Mulac-Jericevic B, Blaustein JD, DeMayo FJ, Conneely OM, O’Malley BW (1996) Dopamine requires the unoccupied progesterone receptor in induce sexual behavior in mice. Mol Endocrinol 10: 1728–1737

    Article  PubMed  CAS  Google Scholar 

  • Meyer ME, Pornon A, Ji JW, Bocquel MT, Chambon P, Gronemeyer H (1990) Agonistic and antagonistic activities of RU486 on the functions of the human progesterone receptor. EMBO J 9: 3923–3932

    PubMed  CAS  Google Scholar 

  • Nakhla AM, Rosner W (1996) Stimulation of prostate cancer growth by androgens and estrogens through the intermediacy of sex hormone-binding globulin. Endocrinology 137: 4126–4129

    Article  PubMed  CAS  Google Scholar 

  • Nakhla AM, Khan MS, Rosner W (1988) Induction of adenylate cyclase in a mammary carcinoma cell line by human corticosteroid-binding globulin. Biochem Biophys Res Commun 153 (3): 1012–1018

    Article  PubMed  CAS  Google Scholar 

  • Nakhla AM, Romas NA, Rosner W (1997) Estradiol activates the prostate androgen receptor and prostate-specific antigen secretion through the intermediacy of sex hormone-binding globulin. J Biol Chem 272 (11): 6838–6841

    Article  PubMed  CAS  Google Scholar 

  • Nazareth LV, Weigel NL (1996) Activation of the human androgen receptor through a protein kinase A signalling pathway. J Biol Chem 271 (33): 19900–19907

    Article  PubMed  CAS  Google Scholar 

  • Nordeen SK, Bona BJ, Moyer ML (1993) Latent agonist activity of the steroid antagonist, RU486 is unmasked in cells treated with activators of protein Kinase A. Mol Endocrinol 7: 731–742

    Article  PubMed  CAS  Google Scholar 

  • Philpott AJ, Shahid M (1996) Dopamine-mediated activation of the human progesterone receptor. Cell Mol Neurobiol 16 (3): 417–420

    Article  PubMed  CAS  Google Scholar 

  • Poletti A, Weigel NL (1993) Identification of a hormone-dependent phosphorylation site adjacent to the DNA-binding domain of the chicken progesterone receptor. Mol Endocrinol 7: 241–246

    Article  PubMed  CAS  Google Scholar 

  • Poletti A, Conneely OM, McDonnell DP, Schrader WT, O’Malley BW, Weigel NL (1993) Chicken progesterone receptor expressed in Saccharomyces cervisiae is correctly phosphorylated at all four ser-pro phosphorylation sites. Biochemistra 32: 9563–9569

    Article  CAS  Google Scholar 

  • Power RF, Mani SK, Codina J, Conneely OM, O’Malley BW (1991) Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 254: 1636–1639

    Article  PubMed  CAS  Google Scholar 

  • Reinikainen P, Palvimo JJ, Janne OA (1996) Effects of mitogens on androgen receptor-mediated transactivation. Endocrinology 137 (10): 4351–4357

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez R, Carson-Jurica MA, Weigel NL, O’Malley BW, Schrader WT (1989) Hormone induced changes in the in vitro DNA-binding activity of the chicken progesterone receptor. Mol Endocrinol 3: 356–362

    Article  PubMed  CAS  Google Scholar 

  • Rowan B, Weigel NL, O’Malley BW (1997) Phosphorylation of chicken progesterone receptor and steroid receptor coactivator-1 during ligand-independent activation by 8-Bromo-cAMP (abstract). The Endocrine Society: program and abstracts

    Google Scholar 

  • Sartorius CA, Tung L, Takimoto GS, Horwitz KB (1993) Antagonist-occupied human progesterone receptors bound to DNA are functionally switched to transcriptional agonists by cAMP. J Biol Chem 268: 9262–9266

    PubMed  CAS  Google Scholar 

  • Sartorius CA, Groshong SD, Miller LA, Powell RL, Tung L, Takimoto GS, Horwitz KB (1994) New T47D breast cancer cell lines for the independent study of progesterone B- and A-receptors: only antiprogestin-occupied B-receptors are switched to transcriptional agonists by cAMP. Cancer Res 54: 3868–3877

    PubMed  CAS  Google Scholar 

  • Smith CL, Conneely OM, O’Malley BW (1993) Modulation of the ligand-independent activation of the human estrogen receptor by hormone and anti-hormone. Proc Natl Acad Sci USA 90: 6120–6124

    Article  PubMed  CAS  Google Scholar 

  • Tsai M-J, O’Malley BW; Tsai M-J, O’Malley BW (eds) (1994) MBIU: mecha- nism of steroid hormone regulation of gene transcription. Landes, Austin

    Google Scholar 

  • Tsai SY, Carlstedt-Duke J, Weigel NL, Dahlman K, Gustafsson J-A, Tsai M-J, O’Malley BW (1988) Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell 55: 361–369

    Article  PubMed  CAS  Google Scholar 

  • Turgeon JL, Waring DW (1994) Activation of the progesterone receptor by the gonadotropin-releasing hormone self-priming signaling pathway. Mol Endocrinol 8: 860–869

    Article  PubMed  CAS  Google Scholar 

  • Weigel NL, Zhang Y (1997) Ligand-independent activation of steroid hormone receptors. J Mol Med (in press)

    Google Scholar 

  • Wilson CM, McPhaul MJ (1994) A and B forms of the androgen receptor are present in human genital skin fibroblasts. Proc Natl Acad Sci USA 91: 1234–1238

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Bai W, Allgood VE, Weigel NL (1994) Multiple signaling pathways activate the chicken progesterone receptor. Mol Endocrinol 8: 577–584

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weigel, N.L., Nazareth, L.V., Keightley, MC., Zhang, Y. (1998). Activation of Progesterone and Androgen Receptors by Signal Transduction Pathways. In: Gronemeyer, H., Fuhrmann, U., Parczyk, K. (eds) Molecular Basis of Sex Hormone Receptor Function. Ernst Schering Research Foundation Workshop, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03689-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03689-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03691-4

  • Online ISBN: 978-3-662-03689-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics