Skip to main content

Permeability of Porous Media as Affected by Shrinkage and Swelling of Clays

  • Conference paper
Soil and Aquifer Pollution

Abstract

Hydraulic conductivity (K) of a porous medium as defined by Darcy’s law

$$ {\rm{K}} = - \frac{{\frac{{\rm{Q}}}{{\rm{A}}}}}{{\frac{{{\rm{dh}}}}{{{\rm{dl}}}}}} $$
((1))

is a transport coefficient which depends both on matrix and pore fluid properties, where Q is discharge, A cross-sectional area, and dh/dl the change in head per unit change in length. The relevant pore fluid properties were determined empirically to be density (p) and dynamic viscosity (μ). Intrinsic permeability (k) was defined to describe the conductive properties of a medium independent of the fluid flowing through it (Nutting 1930)

$$ {\rm{K}} = \frac{{{\rm{K}}\mu }}{{\rho {\rm{g}}}}, $$
((2))

with g as the gravitational constant. In a rigid, noninteracting porous medium with an effective pore radius of r, k was shown to be equal to (Bear 1972)

$$ {\rm{k = f(}}\sigma {\rm{)f(}}\theta {\rm{)}}{{\rm{r}}^{\rm{2}}}, $$
((3))

Where f(σ) is a function of pore shape and f(θ a function of porosity, both dimensionless.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acar YB, Olivieri I (1989) Pore fluid effects on the fabric and hydraulic conductivity of laboratory-compacted clay. Geotechnical engineering. Transport Res Rec 1219:144–159

    Google Scholar 

  • Acar YB, Seals RK (1984) Clay barrier technology for shallow land waste disposal facilities. Haz Waste 1:167–181

    Article  CAS  Google Scholar 

  • Amoozegar A, Warrick AW, Fuller WH (1986) Movement of selected organic liquids into dry soils Haz Mat Haz Waste 3:29–41

    Article  CAS  Google Scholar 

  • Anderson DC, Brown KW, Thomas JC (1985) Conductivity of compacted clay soils to water and organic liquids. Waste man Res 3:339–349

    CAS  Google Scholar 

  • Aylmore LAG, Quirk JP (1962) The structural status of clay systems. In: Ingerson E (ed) Clays and clay minerals. Earth Science Series, Monograph 11. Pergamon Press, New York, pp 104–130

    Google Scholar 

  • Bagley EB, Scigliano JM (1976) Polymer solutions. In: Dack MRJ (ed) Solutions and solubilities. Wiley Interscience, New York pp 437–485

    Google Scholar 

  • Barshad I (1952) Factors affecting the interlayer expansion of vermiculite and montmorillonite with organic substances. Soil Sci Soc Am Proc 16:176–182

    Article  CAS  Google Scholar 

  • Barton AFM (1983) Handbook of solubility parameters and other cohesion parameters. CRC Press, Boca Raton

    Google Scholar 

  • Bear J(1972) Dynamics of fluids in porous media. Elsevier New York

    Google Scholar 

  • Berkheiser V, Mortland MM (1975) Variability in exchange ion position in smectite: dependence on interlayer solvent. Clays Clay Miner 23:404–410

    Article  CAS  Google Scholar 

  • Bohn HL, McNeal BL, O’Connor GA (1979) Soil chemistry. John Wiley New York

    Google Scholar 

  • Bradley WF (1945) Molecular associations between montmorillonite and some poly-functional organic liquids. J Am Chem Soc 67:975–981

    Article  CAS  Google Scholar 

  • Brindley GW (1980) Intracrystalline swelling of montmorillonites in water-dimethylsulfoxide systems. Clays Clay Miner 28:369–372

    Article  CAS  Google Scholar 

  • Brindley GW, Wiewiora K, Wiewiora A (1969) Intracrystalline swelling of montmorillonite in some water-organic mixtures. Clay organic studies, XVII. Am Mineralogist 54:1635–1644

    CAS  Google Scholar 

  • Brown KW, Thomas JC (1984) Conductivity of three commercially available clays to petroleum products and organic solvents. Haz Waste 1:545–553

    Article  CAS  Google Scholar 

  • Brown KW, Thomas JC (1987) A mechnaism by which organic liquids increase the hydraulic conductivity of compacted clay materials. Soil Sci Soc Am J 51:1451–1459

    Article  CAS  Google Scholar 

  • Brown KW, Thomas JC, Green JW (1986) Field cell verification of the effects of concentrated organic solvents on the conductivity of compacted soils. Haz Waste Haz Mat 3:1–19

    Article  CAS  Google Scholar 

  • Chen S, Low PF, Cushman JH, Roth CB (1987) Organic compound effects on swelling and flocculation of Upton montmorillonite. Soil Sci Soc Am J 51:1444–1450

    Article  CAS  Google Scholar 

  • Delville A, Laszlo P (1990) The origin of the swelling of clays by water. Langmuir 6:1289–1294

    Article  CAS  Google Scholar 

  • Demond AH, Rathfelder K, Abriola LM (1996) Simulation of organic liquid flow in porous media using estimated and measured transport properties. J Contam Hydol 22:223–239

    Article  CAS  Google Scholar 

  • Emerson WW (1963) The swelling of Na montmorillonite due to water adsorption. Aust J soil Res 1:129–143

    Article  CAS  Google Scholar 

  • Gerstl Z, Galin Ts, Yaron B (1994) Mass flow of a volatile organic liquid mixture in soils. J Environ Qual 23:487–493

    Article  CAS  Google Scholar 

  • Graber ER, Mingelgrin U (1994) Clay swelling and regular solution theory. Environ Sci Technol 28:2360–2365

    Article  CAS  Google Scholar 

  • Green WJ, Lee GF, Jones A (1981) Clay-soils permeability and hazardous waste storage. J Water Pollut Control Fed 53:1347–1354

    CAS  Google Scholar 

  • Hettiaratchi JPA, Hrudey SE (1987) Influence of contaminant organic-water mixtures on shrinkage of impermeable clay soils with regard to hazardous waste landfill liners. Haz Mat Haz Waste 4:377–388

    Article  CAS  Google Scholar 

  • Hildebrand JH, Prausnitz JM, Scott RL (1970) Regular and related solutions. Van Nostrand Reinhold, New York

    Google Scholar 

  • Israelachvili J, Pashley R (1982) The hydrophobic interaction is long range, decaying exponentially with distance. Nature 300:341–342

    Article  CAS  Google Scholar 

  • Jarsjo J, Destouni G, Yaron B (1997) On the relation between viscosity and hydraulic conductivity values for volatile organic liquid mixtures in soils. J Contam Hydrol 25:113–127

    Article  Google Scholar 

  • Low PF (1980) The swelling of clay. II. Montmorillonites. Soil Sci Soc Am Proc 44:667–676

    Article  CAS  Google Scholar 

  • Low PF (1981) The swelling of clay. III. Dissociation of exchangeable cations. Soil Sci Soc Am Proc 45:1074–1078

    Article  CAS  Google Scholar 

  • Low PF, Margheim JF (1979) The swelling of clay. I. Basic concepts and empirical equations. Soil Sci Soc Am Proc 43:473–481

    Article  Google Scholar 

  • MacEwan DMC (1948) Complexes of clays with organic compounds. I. Complex formation between montmorillonite and halloysite and certain organic liquids. Trans Faraday Soc 44:349–367

    Article  CAS  Google Scholar 

  • Mark HF, Tobolsky AV (1950) Physical chemistry of high polymeric systems, Chap 8. Interscience Publ New York

    Google Scholar 

  • Moore CA, Mitchell JK (1974) Electromagnetic forces and soil strength. Geotechnique 24:627–640

    Article  Google Scholar 

  • Murray RS, Quirk JP (1982) The physical swelling of clays in solvents. Soil Sci Soc Am J 46:865–868

    Article  CAS  Google Scholar 

  • Norrish K (1954) The swelling of montmorillonite. Trans Faraday Soc Lond 18:120–134

    CAS  Google Scholar 

  • Norrish K, Rausell-Colom JA (1961) Low angle x-ray diffraction studies of the swelling of montmorillonite and vermiculite. Clays Clay Miner 10:123–144

    Article  Google Scholar 

  • Nutting PG (1930) Physical analysis of oil sands. Bull Am Assoc Petroe Geol 14:1337–1349

    CAS  Google Scholar 

  • Olejnik S, Posner AM, Quirk JP (1974) Swelling of montmorillonite in polar organic liquids. Clays Clay Miner 22:361–365

    Article  CAS  Google Scholar 

  • Rowell DL (1965) Influence of positive charge on the inter- and intra-crystalline swelling of oriented aggregates of Na montmorillonite in NaCl solutions. Soil Sci 100:340–347

    Article  Google Scholar 

  • Schramm M, Warrick AW, Fuller WH (1986) Permeability of soils to four organic liquids and water. Haz Mat Haz Waste 3:21–27

    Article  CAS  Google Scholar 

  • Tsvetkov F, Heller-Kallai L, Mingelgrin U (1993) Potassium halide-treated montmorillonite (KTM) as a solid phase in liquid chromatography. Clays Clay Miner 41:527–536

    Article  CAS  Google Scholar 

  • van Olphen H (1962) Compaction of clay sediments in the range of molecular particle distances. In: Ingerson E (ed) Clays and clay minerals. Earth Science Series, Monograph 11. Pergamon Press, New York pp 178–187

    Google Scholar 

  • van Olphen H (1963) An introduction to clay colloid chemistry. Interscience Publ New York

    Google Scholar 

  • Viani BE, Low PF, Roth CB (1983) Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite. J Colloid Interface Sci 96:229–244

    Article  CAS  Google Scholar 

  • Viani BE, Roth CB, Low PF (1985) Direct measurement of the relation between swelling pressure and interlayer distance in Li-vermicultie. Clays Clay Miner 33:244–250

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graber, E.R., Mingelgrin, U. (1998). Permeability of Porous Media as Affected by Shrinkage and Swelling of Clays. In: Rubin, H., Narkis, N., Carberry, J. (eds) Soil and Aquifer Pollution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03674-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03674-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08294-8

  • Online ISBN: 978-3-662-03674-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics