Skip to main content

The Frankfurt Biosphere Model (FBM): Regional Validation Using German Forest Yield Tables and Inventory Data and Extrapolation to a 2×CO2 Climate

  • Chapter
Carbon Dioxide Mitigation in Forestry and Wood Industry

Abstract

The Frankfurt Biosphere Model (FBM), a mechanistic and prognostic compartment model of the terrestrial biosphere, has been developed to simulate global carbon exchange fluxes between terrestrial vegetation and the atmosphere with a spatial resolution of 0.5° × 0.5°. The FBM also offers the opportunity to simulate either interannual fluctuations of carbon exchange fluxes or the long-term development of the vegetation under the influence of climate change.

Simulations of German forests under present climate are compared with yield tables and with data from the German forest inventory of 1987 (published 1992). Taking into account that the model is designed for a global scale and that forest management is not considered explicitly, the growth of German forests is represented quite well. For an extrapolation to a 2×CO2 climate two limiting cases need to be taken into account: one in which only climate variation is considered and a second, in which the direct effect of increased levels of atmospheric CO2 on photosynthesis is also considered. The outcome of the experiment is very sensitive to the inclusion of CO2 fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apps M. J., Kurz W.A. (1993): The Role of Canadian Forests in the Global Carbon Budget. In: Carbon Balance of Worlds Forested Ecosystems: Towards a Global Assessment, Publ. Acad. Finland, Helsinki, No. 3: 14–28.

    Google Scholar 

  • Bundesministerium für Ernährung, Landwirtschaft und Forsten (BML)(1992): Bundes-waldinventur 1986–1990, Inventurbericht und übersichtstabellen für das Bundesgebiet nach dem Gebietsstand bis zum O3.10.1990 einschließlich Berlin (West). Band I. & II.

    Google Scholar 

  • Burschel P., Kürsten E., Larson B.C. (1993): Die Rolle von Wald und Forstwirtschaft im Kohlenstoffhaushalt — Eine Betrachtung für die Bundesrepublik Deutschland-, Forstliche Forschungsberichte 126 .München.

    Google Scholar 

  • Claussen M. (1993): Shift of biome pattern due to simulated climate variability and climate change. MPI-Report No. 115, Hamburg.

    Google Scholar 

  • Foerster W., Böswald K. (1994): Methodik und Zuwachsergebnisse einer Zuwachsberechnung für Bayerns Wälder. Forstwiss. Centralbl. 113: 142 – 151.

    Article  Google Scholar 

  • Foley J.A., Kutzbach J.E., Coe M.T., Levis S. (1994): Feedbacks between Climate and Boreal Forests during the Holocene Epoch. Nature 371: 52–54.

    Article  Google Scholar 

  • Fung I.Y., Tucker C.J., Prentice K.C. (1987): Application of Advanced Very High Resolution Radiometer Vegetation Index to Study Atmosphere-Biosphere Exchange of CO2. J. Geophys. Res. 92(D3): 2999–3015.

    Article  CAS  Google Scholar 

  • Häger C.H., Würth G., Wagner U., Kohlmaier G.H. (1996): Responses in the Growth of the Northern Forests to a CO2 induced Climatic Change, as evaluated by the Frankfurt Biosphere Model (FBM), World Resource Review 8(2): 178 – 197.

    Google Scholar 

  • Heimann M., Esser G., Haxeltine A., Kaduk J., Kicklighter D.W., Knorr W., Kohlmaier G.H., McGuire A.D., Melillo J., Moore B., Otto R.D., Prentice I.C., Sauf W., Schloss A., Sitch S., Wittenberg U., Würth G. (1997): Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: first results of a model intercomparison study. Global Biogeochemical Cycles, in press.

    Google Scholar 

  • Janecek A., Benderoth G., Lüdeke M.K.B., Kindermann J., Kohlmaier G.H. (1989): Model of the Seasonal and Perennial Carbon Dynamics in Deciduous-Type Forests Controlled by Climatic Variables. Ecological Modelling 49: 101–124.

    Article  Google Scholar 

  • Kaduk J., Heimann M. (1995): A prognostic phenology scheme for global models of the terrestrial biosphere. Climate Research, 6: 1–19.

    Article  Google Scholar 

  • Kassube A. (1996): Ein vereinfachtes Kohlenstoffkreislaufmodell für die Landbiosphäre als zukünftige Quelle für regenerierbare Energien und als zukünftige Senke für atmosphärisches CO2, Diplomarbeit Universität Frankfurt.

    Google Scholar 

  • Kauppi P.E. (1996): Carbon budget of temperate zone forests during 1851–2050. In: Forests Ecosystems, Forest Management and the Global Carbon Cycle (Apps M.J., Price D.P., eds.) Springer-Verlag, Berlin, 191–198

    Chapter  Google Scholar 

  • Keeling CD., Whorf T.P., Wahlen M., van der Plicht J. (1995): Interannual Extremes in the Rate of Rise of Atmospheric Carbon Dioxide since 1980. Nature, 375, 666–670.

    Article  CAS  Google Scholar 

  • Kindermann J., Lüdeke M.K.B., Badeck F.W., Otto R.D., Klaudius A., Häger C.H., Würth G., Lang T., Dönges S., Habermehl S., Kohlmaier G.H. (1993): Structure of a Global Carbon Exchange Model for the Terrestrial Biosphere: The Frankfurt Biophere Model (FBM). Water, Air and Soil Pollution 70: 675–684.

    Article  CAS  Google Scholar 

  • Kindermann J., Würth G., Kohlmaier G.H., Badeck F.-W. (1996): Interannual Variation of Carbon Exchange Fluxes in Terrestrial Ecosystems. Global Biogeochemical Cycles 10(4): 737–755.

    Article  CAS  Google Scholar 

  • Kirschbaum M.U.F., Farquhar G.D. (1987): Investigation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora. Plant Physiol. 83: 1032–1036.

    Article  CAS  Google Scholar 

  • Kohlmaier G.H., Wiirth G., Häger C., Lüdeke M. (1994): Carbon Balance in the Temperate and Boreal Forests. Proceedings of the Air & Waste Manag. Assoc, international Specialty Conference: Global Climate Change. (Mathai CV, Stensland G, eds). 592–606.

    Google Scholar 

  • Kohlmaier G.H., Häger C., Würth G., Lüdeke M.K.B., Ramge P., Badeck F.-W., Kindermann J., Lang T. (1995a): Effects of the Age Class Distributions of the Temperate and Boreal Forests on the Global CO2-Source-Sink Function. Tellus 47B: 212–231.

    CAS  Google Scholar 

  • Kohlmaier G.H., Häger C.H., Nadler A., Würth G., Lüdeke M.K.B. (1995b): Global Carbon Dynamics of Higher Latitude Forests During an Anticipated Climate Change: Ecophysiological versus Biome-Migration View. Water, Air and Soil Pollution 82: 455–464.

    Article  CAS  Google Scholar 

  • Kohlmaier G.H., Badeck F.-W., Otto R.D., Häger C., Dönges S., Kindermann J., Würth G., Lang T., Jäkel U., Nadler A., Klaudius A., Ramge P., Habermehl S., Lüdeke M.K.B. (1997): The Frankfurt Biosphere Model. A Global Process Oriented Model for the Seasonal and Longterm CO2 Exchange between Terrestrial Ecosystems and the Atmosphere. II: Global results for potential vegetation in an assumed equilibrium state. Climate Research, 8: 61–87.

    Article  Google Scholar 

  • Kramer H. (1988): unter Mitarb. von Gussone H.-A., Schober R. Waldwachstumslehre ökologische und anthropogene Einflüsse auf das Wachstum des Waldes, seine Massen-und Wertleistung und die Bestandessicherheit. Verlag Paul Parey, Hamburg.

    Google Scholar 

  • Leemans R., Cramer W.P. (1991): The IIASA Database for Monthly Values of Temperature, Precipitation and Cloudiness on a Global Terrestrial Grid. Research Report RR-91–18, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Long S.P., Drake B.G. (1992): Photosynthetic CO2 Assimilation and Rising Atmospheric CO2 Concentrations. In: Crop Photosynthesis: Spatial and Temporal Determinants (N.R. Baker, H. Thomas, eds.), Elsevier SP 69–103.

    Google Scholar 

  • Lüdeke M.K.B., Badeck F.-W., Otto R.D., Häger C., Dönges S., Kindermann J., Würth G., Lang T., Jäkel U., Klaudius A., Ramge P., Habermehl S., Kohlmaier G.H. (1994): The Frankfurt Biosphere Model. A Global Process Oriented Model for the Seasonal and Longterm CO2 Exchange between Terrestrial Ecosystems and the Atmosphere. Part 1 : Model Description and Illustrating Results for the Vegetation Types Cold Deciduous and Boreal Forests. Climate Research, 4(2): 143–166.

    Article  Google Scholar 

  • Lüdeke M.K.B., Dönges S., Otto R.D., Kindermann J., Badeck F.-W., Ramge P., Jäkel U., Kohlmaier G.H. (1995): Responses in NPP and Carbon Stores of the Northern Biomes to a CO2-induced Climatic Change as Evaluated by the Frankfurt Biosphere Model (FBM). Tellus 41B: 191–205.

    Google Scholar 

  • Lüdeke M.K.B., Ramge P.H., Kohlmaier G.H. (1996): The Use of Satellite NDVI Data for the Validation of Global Vegetation Phenology Models: Application to the Frankfurt Biosphere Model. Ecological Modelling 91: 255–270.

    Article  Google Scholar 

  • Matthews E. (1983): Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies. J. Clim. Appl. Meteor. 22(3): 474–487.

    Article  Google Scholar 

  • Matthews E. (1984): Global inventory of pre-agricultural and present biomass. Progress in Biometeorology 3: 237–246.

    Google Scholar 

  • Mohr H. (1994): Stickstoffeintrag als Ursache neuartiger Waldschäden. Spektrum der Wissenschaft 1:48–53.

    Google Scholar 

  • Plöchl M., Cramer W. (1995): Coupling Global Models of Vegetation Structure and Ecosystem Processes — An Example from Arctic and Boreal Ecosystems. Tellus B 47B: 240–250.

    Article  Google Scholar 

  • Potter CS., Randerson T., Field C.B., Matson P.A., Vitousek P.M., Mooney H.A., Klooster S.A. (1993): Terrestrial Ecosystem Production: A Process Model based on Global Sattelite and Surface Data. Global Biogeochemical Cycles 7(4): 811–841.

    Article  Google Scholar 

  • Pretsch H. (1992): Konzeption und Konstruktion von Wuchsmodellen für Rein- und Mischbestände. Forstliche Forschungsberichte 115 .München.

    Google Scholar 

  • Raich J.W., Rastetter E.B., Melillo J.M., Kicklighter D.W., Steudler P.A., Peterson B.J., Grace, A.L., Moore III B., Vörösmarty C.J. (1991): Potential Net Primary Productivity in South America: Application of a Global Model. Ecological Applications 1(4): 399–429.

    Article  Google Scholar 

  • Rasmussen R.A., Khalil M.A.K. (1986): Atmospheric Trace Gases: Trends and Distribution over the Last Decade. Science 232: 1623–1624.

    Article  CAS  Google Scholar 

  • Richards F.J. (1959): A Flexible Growth Function for Empirical Use, Journal, of Experimental Botany 10, (29): 290–300.

    Article  Google Scholar 

  • Ruimy A., Saugier B., Dedieu G. (1994): Methodology for the estimation of terrestrial net primary productivity from remotely sensed data. Journal of Geophysical Research 99: 5263–5283.

    Article  Google Scholar 

  • Schlamadinger B., Spitzer J., Kohlmaier G.H., Lüdeke M.K.B. (1995): Carbon balance of bioenergy from logging residues. Biomass and Bioenergy 8: 221–234.

    Article  Google Scholar 

  • Schober R. (1979): Ertragstafeln wichtiger Baumarten bei verschiedener Durchforstung. 2. unveränd. Auflage, J. D. Sauerländer, Frankfurt am Main.

    Google Scholar 

  • Schönwiese C.-D., Rapp J., Fuchs T., Denhard M. (1993): Klimatrend-Atlas Europa 1891–1990. Berichte des Zentrums für Umweltforschung Nr; 20, Frankfurt.

    Google Scholar 

  • Spiecker H., Mielikäinen K., Kohl M., Skovsgaard J.P. (eds.)(1996): Growth Trends in European Forests. EFI Research Report No. 5, Springer Verlag, Berlin.

    Google Scholar 

  • Thornley J.H.M. (1970): Respiration, growth and maintenance in plants. Nature 221: 304–305.

    Article  Google Scholar 

  • Wagner A.U. (1995): Differenzierung der Wachstums- und Erhaltungsrespiration im Anschluß and die Photosyntheseprozesse von Pflanzen als Modellbaustein für das Frankfurter Biosphärenmodell, Diplomarbeit Universität Frankfurt.

    Google Scholar 

  • Warnant P., Francois L., Strivay D., Gérard J.C. (1994): CARAIB: A global model of terrestrial biological productivity. Global Biogeochemical Cycles 8: 255–270.

    Article  CAS  Google Scholar 

  • Woodward F.I., Smith T.M., Emanuel W.R. (1995): A global primary productivity and phytogeography model. Global Biogeochemical Cycles, 9: 471–490.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Würth, G., Häger, C., Kohlmaier, G.H. (1998). The Frankfurt Biosphere Model (FBM): Regional Validation Using German Forest Yield Tables and Inventory Data and Extrapolation to a 2×CO2 Climate. In: Carbon Dioxide Mitigation in Forestry and Wood Industry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03608-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03608-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08330-3

  • Online ISBN: 978-3-662-03608-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics