Skip to main content

Discovery, Development, and Application of Synthetic Gene Delivery Systems

  • Conference paper
Gene Therapy

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 27))

  • 206 Accesses

Abstract

More than 25 years ago, in a Science article, Friedmann and Roblin outlined prospects for human gene therapy (Friedmann and Roblin 1972). This forward—looking review anticipated the development of two alternative gene delivery systems: viral gene therapy vectors and synthetic gene delivery systems using purified gene sequences. Theoretical support for the use of viruses arose from the knowledge that DNA and RNA tumor viruses were capable of introducing heritable changes into the genome of mammalian cells. Friedmann proposed that, if the deleterious features of these viruses could be eliminated, one might safely deliver a desirable gene to correct cellular defects or genetic disorders. As molecular biology techniques matured, the tools to package genes into nonreplicating, recombinant retroviral vectors became available (Mann et al. 1983). These vectors allowed investigators to introduce recombinant genes into living cells and to permanently transduce them with a new genetic phenotype. During the last 15 years substantial progress has been made to produce safe and effective viral vectors, and we have witnessed an exponential growth in preclinical research and clinical development of recombinant viral vectors for gene therapy applications (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander HE, Koch G, Moran-Mountain I, Sprunt K, Van Damme O (1958) Infectivity of ribonucleic acid of poliovirus on HeLa cell monolayers. J Exp Med 108:493–506

    Article  PubMed  CAS  Google Scholar 

  • Avery OT, MacLeod CM, MacCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 79:137–158

    Article  PubMed  CAS  Google Scholar 

  • Benvenisty N, Reshef L (1986) Direct introduction of genes into rats and expression of the genes. Proc Natl Acad Sci USA 83:9551–9555

    Article  PubMed  CAS  Google Scholar 

  • Bouchard L, Gelinas C, Asselin C, Bastin M (1984) Tumorigenic activity of polyoma virus and SV40 DNAs in newborn rodents. Virology 135:53–64

    Article  PubMed  CAS  Google Scholar 

  • Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  PubMed  CAS  Google Scholar 

  • Brigham KL, Meyrick B, Christman B, Magnuson M, King G, Berry LC Jr (1989) In vivo transfection of murine lungs with a functioning prokaryotic gene using a liposome vehicle. Am J Med Sci 298:278–281

    Article  PubMed  CAS  Google Scholar 

  • Dubensky TW, Cambell BA, Villarreal LP (1984) Direct transfection of viral plasmid DNA into the liver or spleen of mice. Proc Natl Acad Sci USA 81:7529–7533

    Article  PubMed  CAS  Google Scholar 

  • Feigner PL, Rhodes G (1991) Gene therapeutics. Nature 349:351–352

    Article  Google Scholar 

  • Feigner PL, Ringold GM (1989) Cationic liposome-mediated transfection. Nature 337:387–388

    Article  Google Scholar 

  • Feigner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  Google Scholar 

  • Feigner PL, Barenholz Y, Behr JP, Cheng SH, Cullis P, Huang L, Jessee JA, Seymour L, Szoka F, Thierry AR, Wagner E, Wu G (1997) Nomenclature for synthetic gene delivery systems. Hum Gene Ther 8:511–512

    Article  Google Scholar 

  • Feigner PL, Zaugg RH, Norman JA (1995) Synthetic recombinant DNA delivery for cancer therapeutics. Cancer Gene Ther 2:61–65

    Google Scholar 

  • Fraley R, Subramani S, Berg P, Papahadjopoulos D (1980) Introduction of liposome-encapsulated SV40 DNA into cells. J Biol Chem 255:10431–10435

    PubMed  CAS  Google Scholar 

  • Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science 175:949–955

    Article  PubMed  CAS  Google Scholar 

  • Fung YK, Crittenden LB, Fadly AM, Kung HJ (1983) Tumor induction by direct injection of cloned v-src DNA into chickens. Proc Natl Acad Sci USA 80:353–357

    Article  PubMed  CAS  Google Scholar 

  • Gould-Fogerite S, Mazurkiewicz JE, Raska K Jr, Voelkerding K, Lehman JM, Mannino RJ (1989) Chimerasome-mediated gene transfer in vitro and in vivo. Gene 84:429–438

    Article  PubMed  CAS  Google Scholar 

  • Graham FL, Van Der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467

    Article  PubMed  CAS  Google Scholar 

  • Hakim I, Levy S, Levy R (1986) A nine-amino acid peptide from IL-lbeta augments antitumor immune responses induced by protein and DNA vaccines. J Immunol 157:5503–5511

    Google Scholar 

  • Holland JJ, McLaren LC, Syverton JT (1959) The Mammalian cell-virus relationship III Poliovirus production by non-primate cells exposed to poliovirus ribonucleic acid. Proc Soc Exp Biol Med 100:843–845

    Article  PubMed  CAS  Google Scholar 

  • Holt CE, Garlick N, Cornel E (1990) Lipofection of cDNAs in the embryonic vertebrate central nervous system. Neuron 4:203–214

    Article  PubMed  CAS  Google Scholar 

  • Hwang LS, Gilboa E (1984) Expression of genes introduced into cells by retroviral infection is more efficient than that of genes introduced into cells by DNA transfection. J Virol 50:417–424

    PubMed  CAS  Google Scholar 

  • Israel MA, Chan HW, Martin MA, Rowe WP (1979) Molecular cloning of polyoma virus DNA in Escherichia coli: oncogenicity testing in hamsters. Science 205:1140–1142

    Article  PubMed  CAS  Google Scholar 

  • Johnston SA, Anziano PQ, Shark K, Sanford JS, Butow RA (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240:1538–1541

    Article  PubMed  CAS  Google Scholar 

  • Kaneda Y, Iwai K, Uchida T (1989) Increased expression of DNA cointro-duced with nuclear protein in adult rat liver. Science 243:375–378

    Article  PubMed  CAS  Google Scholar 

  • Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:153–159

    Article  PubMed  CAS  Google Scholar 

  • Minson AC, Wildy P, Buchan A, Darby G (1978) Introduction of the herpes simplex virus thymidine kinase gene into mouse cells using virus DNA or transformed cell DNA. Cell 13:581–587

    Article  PubMed  CAS  Google Scholar 

  • Mulligan RC, Howard BH, Berg P (1979) Synthesis of rabbit beta-globin in cultured monkey kidney cells following infection with a SV40 beta-globin recombinant genome. Nature 277:108–114

    Article  PubMed  CAS  Google Scholar 

  • Nabel EG, Plautz G, Boyce FM, Stanley JC, Nabel GJ (1989) Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science 244:1342–1344

    Article  PubMed  CAS  Google Scholar 

  • Nabel GJ, Feigner PL (1993) Direct gene transfer for immunotherapy and immunization. Trends Biotechnol 11:211–215

    Article  PubMed  CAS  Google Scholar 

  • Nabel GJ, Yang ZY, Nabel EG, Bishop K, Marquet M, Feigner PL, Gordon D, Chang AE (1995) Direct gene transfer for treatment of human cancer. Ann NY Acad Sci 772:227–231

    Article  PubMed  CAS  Google Scholar 

  • Nicolau C, Le Pape A, Soriano P, Fargette F, Juhel MF (1983) In vivo expression of rat insulin after intravenous administration of the liposome-en-trapped gene for rat insulin I. Proc Natl Acad Sci USA 80:1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Seeger C, Ganem D, Varmus HE (1984) The cloned genome of ground squirrel hepatitis virus is infectious in the animal. Proc Natl Acad Sci USA 81:5849–5852

    Article  PubMed  CAS  Google Scholar 

  • Smull CE, Ludwig EH (1962) Enhancement of the plaque-forming capacity of poliovirus ribonucleic acid with basic proteins. J Bacteriol 84:1035–1040

    PubMed  CAS  Google Scholar 

  • Southern PJ, Berg P (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Gen 1:327–341

    CAS  Google Scholar 

  • Tang MX, Redemann CT, Szoka FC Jr (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7:703–714

    Article  PubMed  CAS  Google Scholar 

  • Tripathy SK, Svensson EC, Black HB, Goldwasser E, Margalith M, Hobart PM, Leiden JM (1996) Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector. Proc Natl Acad Sci USA 93:10876–10880

    Article  PubMed  CAS  Google Scholar 

  • Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Feigner PL, Dwarki VJ, Gromkowski SH, Deck RR, DeWitt CM, Friedman A et al (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745–1749

    Article  PubMed  CAS  Google Scholar 

  • Vaheri A, Pagano JS (1965) Infectious poliovirus RNA: a sensitive method of assay. Virology 27:434–436

    Article  PubMed  CAS  Google Scholar 

  • Wagner E, Zenke M, Cotten M, Beug H, Birnstiel ML (1990) Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc Natl Acad Sci USA 87:3410–3414

    Article  PubMed  CAS  Google Scholar 

  • Wang CY, Huang L (1987) pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc Natl Acad Sci USA 84:7851–7855

    Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani G, Feigner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Wilson JM, Wu GY (1989) Targeting genes: delivery and persistent expression of a foreign gene driven b mammalian regulatory elements in vivo. J Biol Chem 264:16985–16987

    PubMed  CAS  Google Scholar 

  • Wu GY, Wu CH (1987) Receptor mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 262:4429–4432

    PubMed  CAS  Google Scholar 

  • Yang NS, Burkholder J, Roberts B, Martinell B, McCabe D (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 87:9568–9572

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

R. E. Sobol K. J. Scanlon E. Nestaas

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Felgner, P.L. (1998). Discovery, Development, and Application of Synthetic Gene Delivery Systems. In: Sobol, R.E., Scanlon, K.J., Nestaas, E. (eds) Gene Therapy. Ernst Schering Research Foundation Workshop, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03577-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03577-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03579-5

  • Online ISBN: 978-3-662-03577-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics