Skip to main content

Immunological Approaches for Gene Therapy of Cancer

  • Conference paper
Gene Therapy

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 27))

  • 194 Accesses

Abstract

The identification of immunostimulatory and tumor antigen genes combined with advances in our ability to modify gene expression has fostered a new era of tumor immunotherapy. These novel immuno-gene therapies include tumor cell vaccines genetically engineered to express cytokine genes or modified by antisense vectors to inhibit immunosuppressive or differentiation factors, cytokine gene transfer into tumor infiltrating lymphocytes (TILs), intratumoral injection of allogeneic MHC or cytokine cDNA and vaccination with tumor antigen nucleic acids. Immuno-gene therapy is the most frequent form of gene therapy in current clinical trials. Table 1 lists the clinical trials which have been submitted for approval to regulatory agencies worldwide. Each of these novel immuno-gene therapies has advantages and disadvantages with respect to their potential for clinical applications. In general, immunotherapies involving autologous tumor cells have the potential advantage of containing the largest number of pertinent tumor antigens for a particular patient. However, the customized nature of autologous tumor and TIL-based treatments make them expensive and difficult to manufacture. The use of allogeneic cell lines in vaccine preparations provides practical advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azuma M, Yssel H, Phillips JH et al. (1993) Functional expression of B7/BB1 on activated T lymphocytes. J Exp Med 177:845–850

    Article  PubMed  CAS  Google Scholar 

  • Belli F, Arienti F, Sule-Suso J, Clemente C, Mascheroni L, Cattelan A, Sanatorio C, Gallino GF, Melani C, Rao S, Colombo MP, Maio M, Cascinelli N, Parmiani G (1997) Active immunization of metastatic melanoma patients with interleukin-2-transduced allogeneic melanoma cells: evaluation of efficacy and tolerability. Cancer Immunol Immunother 44(4): 197–203

    Article  PubMed  CAS  Google Scholar 

  • Borden EC, Sondel PM (1990) Lymphokines and cytokines as cancer treatment. Immunotherapy realized. Cancer 65 [3 Suppl]: 800–814

    Article  PubMed  CAS  Google Scholar 

  • Bubenik J, Viotenok NN, Kieler J, Prassolov VS, Chumakov PM, Bubenikova D, Simova J, Jandlova T (1988) Local administration of cells containing an inserted IL-2 gene and producing IL-2 inhibits growth of human tumors in nu/nu mice. Immunol Lett 19:279–282

    Article  PubMed  CAS  Google Scholar 

  • Bullard DE, Thomas DGT, Darling JL, Wikstrand CJ, Diengdoh JV, Barnard RO, Bodmer JG, Bigner DD (1985) A preliminary study utilizing viable HLA mismatched cultured glioma cells as adjuvant therapy for patients with malignant gliomas. Br J Cancer 51:283–289

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Smith M, Nguyen T, Maher DW, Hersey P (1994) T cell recognition of melanoma antigens in association with HLA-Al on allogeneic melanoma cells. Cancer Immunol Immunother 38(6):385–393

    Article  PubMed  CAS  Google Scholar 

  • Crowley NJ, Slinghuff CL, Darrow T et al. (1990) Generation of human autologous tumor specific cytotoxic T cells using HLA-Al matched allogeneic melanoma. Cancer Res 50:492

    PubMed  CAS  Google Scholar 

  • Crowley NJ, Darrow TL, Quinn-Allen MA et al. (1991) MHC-restricted recognition of autologous melanoma by tumor-specific cytotoxic T cells. Evidence for restriction by a dominant HLA-A allele. J Immunol 146:1692–1699

    PubMed  CAS  Google Scholar 

  • De Plaen E, Arden K, Traversali C et al.. (1994) Structure, chromosomal localization and expression of 12 genes of the MAGE family. Immunogenetics 40:360–369

    Article  PubMed  CAS  Google Scholar 

  • Fakhrai H, Shawler DL, Gjerset R et al. (1995) Cytokine gene therapy with in-terleukin-transduced fibroblasts: effects of IL-2 dose on anti-tumor immunity. Hum Gene Ther 6:591–601

    Article  PubMed  CAS  Google Scholar 

  • Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, Karasuyama H, Vogelstein B, Frost P (1990) Interleukin-2 production by tumor cells bypasses T helper function in the generation of an anti-tumor reponse. Cell 60:387–403

    Article  Google Scholar 

  • Finn OJ (1993) Tumor-rejection antigens recognized by T lymphocytes. Curr Opin Immunol 5:701–708

    Article  PubMed  CAS  Google Scholar 

  • Freeman GJ, Freedman AS, Segil JM et al. (1989) B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J Immunol 143:2714–2722

    PubMed  CAS  Google Scholar 

  • Gandolfi L, Solmi L, Pizza GC, Bertoni F, Muratori R, DeVinci C, Bacchini P, Morelli MC, Corrado G (1989) Intratumoral echo-guided injection of interleukin-2 and cytokine-activated killer cells in hepatocellular carcinoma. Hepatogastroenterology 36:352–356

    PubMed  CAS  Google Scholar 

  • Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E (1990) In-terleukin-2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 172:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Herlyn D, Linnenbach A, Koprowski H, Herlyn M (1991) Epitope- and antigen-specific cancer vaccines. Int Rev Immunol 7(4):245–257

    Article  PubMed  CAS  Google Scholar 

  • Herlyn D, Harris D, Zaloudik J, Sperlagh M, Maruyama H, Jacob L, Kieny MP, Scheck S, Somasundaram R, Hart E et al. (1994) Immunomodulatory activity of monoclonal anti-idiotypic antibody to anti-colorectal carcinoma antibody CO 17–1A in animals and patients. J Immunother 15(4):303–311

    Article  CAS  Google Scholar 

  • Hollingsworth S, Gaken J, Darling D et al. (1995) Induction of tumor rejection by combination B7.1/IL-2 expressing tumor cells. Cancer Gene Therapy 2:240

    Google Scholar 

  • Hoover HC, Brandhorst JS, Peters LC et al. (1993) Adjuvant active specific immunotherapy for human colorectal cancer: 6.5-year median follow-up of a phase III prospectively randomized trial. J Clin Oncol 11:390–399

    PubMed  Google Scholar 

  • June CH, Ledbetter JA, Linsley PS et al. (1990) Role of the CD28 receptor in T cell activation. Immunol Today 11(6):211–216

    Article  PubMed  CAS  Google Scholar 

  • Kelso A (1989) Cytokines: structure function and synthesis. Curr Opin Immunol 2(2):215–225

    Article  PubMed  CAS  Google Scholar 

  • Kim TS, Cohen EP (1994) Interleukin-2-secreting mouse fibroblasts trans-fected with genomic DNA from murine melanoma cells prolong the survival of mice with melanoma. Cancer Res 54(10):2531–2535

    PubMed  CAS  Google Scholar 

  • Kim TS, Russell SJ, Collins MK, Cohen EP (1992) Immunity to B16 melanoma in mice immunized with IL-2-secreting allogeneic mouse fibroblasts expressing melanoma-associated antigens. Int J Cancer 51(2):283–289

    Article  PubMed  CAS  Google Scholar 

  • Lotze MT, Chang AE, Seipp CA et al. (1986) High-dose recombinant inter-leukin-2 in the treatment of patients with disseminated cancer: responses, treatment-related morbidity and histologic findings. JAMA 256:3117–3124

    Article  PubMed  CAS  Google Scholar 

  • Mondino A, Jenkins MK (1994) Surface proteins involved in T cell costimula-tion. J Leukoc Biol 55(6):805–815

    PubMed  CAS  Google Scholar 

  • Pandolfini F, Boyle LA, Tretin L et al. (1991) Expression of HLA-A1 antigen in human melanoma cell lines and its role in T cell recognition. Cancer Res 51:3164–3170

    Google Scholar 

  • Pizza G, Viza D, DeVince C, Vichi-Pascuuchi JM, Busutti L, Bergami T (1988) Intralymphatic administration of interleukin-2 (IL-2) in cancer patients: a pilot study. Cytokine Res 7:45–48

    CAS  Google Scholar 

  • Rosenberg SA, Lotze MT, Mule JJ (1988) New approaches to the immunotherapy of cancer. Ann Intern Med 108:853–864

    Article  PubMed  CAS  Google Scholar 

  • Sarna G, Collins J, Figlin R, Robertson P, Altrock B, Abels R (1990) A pilot study of intralymphatic interleukin-2. II. Clinical and biological effects. J Biol Response Modif 9:81–86

    CAS  Google Scholar 

  • Shawler DL, Dorigo O, Van Beveren C, Bartholomew RM, Fakhrai H, Sobol RE (1997) Comparison of interleukin-2 (IL-2) gene therapy with allogeneic fibroblasts in the CT-26 model of murine colorectal carcinoma. Oncol Rep 4:135–138

    PubMed  CAS  Google Scholar 

  • Sivasubramanian B, Ostrand-Rosenberg S, Nabavi N et al. (1993) Constitutive expression of B7 restore immunogenicity of tumor cells expressing truncated major histocompatibility complex class II molecules. Proc Natl Acad Sci USA 90:5687–56890

    Article  Google Scholar 

  • Smith JW II, Schoof DD, Disis ML, Brant-Zawadski P, Wood W, Doran T, Johnson E, Urba WJ (1997) Genetic immunization of patients with metastatic breast cancer using a CD80 (B7.1)-modifìed, HLA-A2+, HER2/neu+, allogeneic breast cancer cell vaccine plus GM-CSF. Cancer Gene Ther 4(6):S48

    Google Scholar 

  • Sobol RE, Fakhrai H, Shawler DL et al. (1995) Interleukin-2 gene therapy in a patient with glioblastoma. Gene Ther 2:164–167

    PubMed  CAS  Google Scholar 

  • Tahara H, Zeh HJ III, Storkus WJ et al. (1994) Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res 54(1): 182–189

    PubMed  CAS  Google Scholar 

  • Tepper RI, Pattengale PK, Leder P (1989) Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57:503–512

    Article  PubMed  CAS  Google Scholar 

  • Townsend SE, Allison JP (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259:368–370

    Article  PubMed  CAS  Google Scholar 

  • Veelken H, Mackensen A, Lahn M; Kohler G, Becker D, Franke B, Brennscheidt U, Kulmburg P, Rosenthal FM, Keller H, Hasse J, Schultze-Seemann W, Farthmann EH, Mertelsmann R, Lindemann A (1997) A phase-I clinical study of autologous tumor cells plus interleukin-2-gene-transfected allogeneic fibroblasts as a vaccine in patients with cancer. Int J Cancer 70(3):269–277

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Kuribayashi K, Miyatake S, Nishihara K, Nakayama EL, Tani-yama T, Sakata TA (1989) Exogenous expression of mouse interferon gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tu-morigenicity by augmented anti-tumor immunity. Proc Natl Acad Sci USA 86:9456–9460

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

R. E. Sobol K. J. Scanlon E. Nestaas

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sobol, R.E. et al. (1998). Immunological Approaches for Gene Therapy of Cancer. In: Sobol, R.E., Scanlon, K.J., Nestaas, E. (eds) Gene Therapy. Ernst Schering Research Foundation Workshop, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03577-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03577-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03579-5

  • Online ISBN: 978-3-662-03577-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics