Skip to main content

Hematopoietic Ex Vivo Gene Transfer

  • Conference paper
Gene Therapy

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 27))

  • 194 Accesses

Abstract

The goal of somatic gene therapy is to therapeutically benefit an individual by transferring genetic information to non—germline cells. Genes can be transferred either to replace the function of a defective gene in order to add genetic information and thereby provide an additional function to a target cell or to suppress the function of an already active gene in the target cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnett MJ, Eaves CJ, Phillips GL, Gascoyne RD, Hogge DE, Horsman DE, Humphries RK, Klingemann HG, Lansdorp PM, Nantel SH et al (1994) Autografting with cultured marrow in chronic myeloid leukemia: results of a pilot study (see comments). Blood 84:724–32

    PubMed  CAS  Google Scholar 

  • Bhatia R, Mcglave PB, Miller JS, Wissink S, Lin WN, Verfaillie CM (1997) A clinically suitable ex vivo expansion culture system for ltc-ic and cfc using stroma-conditioned medium. Exp Hematol 25:980–991

    PubMed  CAS  Google Scholar 

  • Bieniasz PD, Weiss RA, Mcclure MO (1995) Cell cycle dependence of foamy retrovirus infection. J Virol 69:7295–7299

    PubMed  CAS  Google Scholar 

  • Bodine DM, Karlsson S, Papayannopoulou T, Nienhuis AW (1989) Expression of human beta globin genes introduced into primitive murine hematopoietic progenitor cells by retrovirus mediated gene transfer. Prog Clin Biol Res 316B:219–233

    PubMed  CAS  Google Scholar 

  • Bodine DM, Moritz T, Donahue RE, Luskey BD, Kessler SW, Martin DI, Orkin SH, Nienhuis AW, Williams DA (1993) Long-term in vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into CD34+ bone marrow cells. Blood 82:1975–1980

    PubMed  CAS  Google Scholar 

  • Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P, Mazzolari E, Maggioni D, Rossi C, Servida P, Ugazio AG, Mavilio F (1995) Gene therapy in peripheral blood lymphocytes and bone marrow for ADA(-) immunodeficient patients. Science 270:470–475

    Article  PubMed  CAS  Google Scholar 

  • Brenner MK, Rill DR, Holladay MS, Heslop HE, Moen RC, Buschle M, Krance RA, Santana VM, Anderson WF, Ihle JN (1993a) Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 342:1134–1137

    Article  PubMed  CAS  Google Scholar 

  • Brenner MK, Rill DR, Moen RC, Krance RA, Mirro JJ, Anderson WF, Ihle JN (1993b) Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 341:85–86

    Article  PubMed  CAS  Google Scholar 

  • Brown RL, Sheng F, Dusing SK, Fischer R, Patchen M (1997) Serum-free culture conditions for cells capable of producing long-term survival in lethally irradiated mice. Stem Cells 15:237–245

    Article  PubMed  CAS  Google Scholar 

  • Brugger W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L (1995) Reconstitution of hematopoiesis after high-dose chemotherapy by autologous progenitor cells generated ex vivo. N Engl J Med 333:283–287

    Article  PubMed  CAS  Google Scholar 

  • Bunnell BA, Muul LM, Donahue RE, Blaese RM, Morgan RA (1995) High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes. Proc Natl Acad Sci USA 92:7739–7743

    Article  PubMed  CAS  Google Scholar 

  • Carter RF, Abrams OA, Dick JE, Kruth SA, Valli VE, Kamel RS, Dube ID (1992) Autologous transplantation of canine long-term marrow culture cells genetically marked by retroviral vectors. Blood 79:356–364

    PubMed  CAS  Google Scholar 

  • Conneally E, Cashman J, Petzer AL, Eaves CJ (1996) In vitro expansion of human lympho-myeloid stem cells from cord blood demonstrated using a quantitative in vivo repopulating assay. Blood

    Google Scholar 

  • Dao MA, Hannum CH, Kohn DB, Nolta JA (1997) Flt3 ligand preserves the ability of human cd34(+) progenitors to sustain long-term hematopoiesis in immune-deficient mice after ex vivo retroviral-mediated transduction. Blood 89:446–456

    PubMed  CAS  Google Scholar 

  • Deisseroth AB, Zu Z, Claxton D, Hanania EG, Fu S, Ellerson D, Goldberg L, Thomas M, Janicek K, Anderson WF, Hester J, Korbling M, Durett A, Moen R, Berenson R, Heimfeld S, Hamer J, Clavert L, Tibbits P, Talpaz M, Kantarijan H, Champlin R, Reeding C (1994) Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 83:3068–3076

    PubMed  CAS  Google Scholar 

  • Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of hematopoietic cells in vitro. J Cell Physiol 91:335–344

    Article  PubMed  CAS  Google Scholar 

  • Dexter TM, Simmons P, Purneil RA, Spooncer E, Schofield R (1984) The regulation of hemopoietic cell development by the stromal cell environment and diffusible regulatory molecules. Prog Clin Biol Res 148:13–33

    PubMed  CAS  Google Scholar 

  • Dick JE, Magli MC, Huszar D, Phillips RA, Bernstein A (1985) Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42:71–79

    Article  PubMed  CAS  Google Scholar 

  • Dunbar CE, Cottlerfox M, Oshaughnessy JA, Doren S, Carter C, Berenson R, Brown S, Moen RC, Greenblatt J, Stewart FM, Leitman SF, Wilson WH, Cowan K, Young NS, Nienhuis AW (1995) Retrovirally marked CD34-en-riched peripheral blood and bone marrow cells contribute to long-term en-graftment after autologous transplantation. Blood 85:3048–3057

    PubMed  CAS  Google Scholar 

  • Eaves AC, Eaves CJ, Phillips GL, Barnett MJ (1993) Culture purging in leukemia: past, present, and future. Leuk Lymph 11:259–263

    Article  Google Scholar 

  • Fisheradams G, Wong KK, Podsakoff G, Forman SJ, Chatterjee S (1996) Integration of adeno-associated virus vectors in cd34(+) human hematopoietic progenitor cells after transduction. Blood 88:492–504

    CAS  Google Scholar 

  • Fraser CC, Szilvassy SJS, Eaves CJ, Humphries RK (1992) Proliferation of totipotent hematopoietic stem cells in vitro with retention of long-term competitive in vivo reconstituting ability. Proc Natl Acad Sci USA 89:1968–1972

    Article  PubMed  CAS  Google Scholar 

  • Gan OI, Murdoch B, Larochelle A, Dick JE (1997) Differential maintenance of primitive human scid-repopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells. Blood 90:641–650

    PubMed  CAS  Google Scholar 

  • Gartner S, Kaplan HS (1980) Long-term culture of human bone marrow cells. Proc Natl Acad Sci USA 77:4756–4759

    Article  PubMed  CAS  Google Scholar 

  • Halbert CL, Alexander IE, Wolgamot GM, Miller AD (1995) Adeno-associated virus vectors transduce primary cells much less efficiently than immortalized cells. J Virol 69:1473–1479

    PubMed  CAS  Google Scholar 

  • Han M, Kobayashi M, Imamura M, Hashino S, Kobayashi H, Maeda S, Iwasaki H, Fujii Y, Musashi M, Sakurada K et al (1993) In vitro expansion of murine hematopoietic progenitor cells in liquid cultures for bone marrow transplantation: effects of stem cell factor. Int J Hematol 57:113–120

    PubMed  CAS  Google Scholar 

  • Henschler R, Brugger W, Luft T, Frey T, Mertelsmann R, Kanz L (1994) Maintenance of transplantation potential in ex vivo expanded CD34(+)-se-lected human peripheral blood progenitor cells. Blood 84:2898–2903

    PubMed  CAS  Google Scholar 

  • Hirata RK, Miller AD, Andrews RG, Russell DW (1996) Transduction of hematopoietic cells by foamy virus vectors. Blood 88:3654–3661

    PubMed  CAS  Google Scholar 

  • Hollander GA, Luskey BD, Williams DA, Burakoff SJ (1992) Functional expression of human CD8 in fully reconstituted mice after retroviral-mediated gene transfer of hemopoietic stem cells. J Immunol 149:438–444

    PubMed  CAS  Google Scholar 

  • Kantoff PW, Flake AW, Eglitis MA, Scharf S, Bond S, Gilboa E, Erlich H, Harrison MR, Zanjani ED, Anderson WF (1989) In utero gene transfer and expression: a sheep transplantation model. Blood 73:1066–1073

    PubMed  CAS  Google Scholar 

  • Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, Miller AD (1994) Cell-surface receptors for gibbon ape leukemia virus and amphot-ropic murine retrovirus are inducible sodium-dependent phosphate sym-porters. Proc Natl Acad Sci USA 91:7071–7075

    Article  PubMed  CAS  Google Scholar 

  • Kiem HP, Darovsky B, von Kalle C, Goehle S, Stewart D, Graham T, Hack-man R, Appelbaum FR, Deeg HJ, Miller AD et al (1994) Retrovirus-mediated gene transduction into canine peripheral blood repopulating cells. Blood 83:1467–1473

    PubMed  CAS  Google Scholar 

  • Kohn DB, Weinberg KI, Nolta JA, Heiss LN, Lenarsky C, Crooks GM, Hanley ME, Annett G, Brooks JS, Elkhoureiy A, Lawrence K, Wells S, Moen RC, Bastian J, Williamsherman DE, Elder M, Wara D, Bowen T, Hershfield MS, Mullen CA, Blaese RM, Parkman R (1995) Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med 1:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Koller MR, Emerson SG, Palsson BO (1993) Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood 82:378–384

    PubMed  CAS  Google Scholar 

  • Koller MR, Manchel I, Palsson BO (1997) Importance of parenchymal/stromal cell ratio for the ex vivo reconstitution of human hematopoiesis. Stem Cells 15:305–313

    Article  PubMed  CAS  Google Scholar 

  • Lemischka IR, Raulet DH, Mulligan RC (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45:917–927

    Article  PubMed  CAS  Google Scholar 

  • Lieber A, Vrancken-Peeters MTFD, Kay MA (1995) Adenovirus-mediated transfer of the amphotropic retrovirus receptor cDNA increases retroviral transduction in cultured cells. Hum Gene Ther 6:5–11

    Article  PubMed  CAS  Google Scholar 

  • Lothrop CJ, Niemeyer GP, Jones JB, Peterson MG, Smith JR, Baker HJ, Morgan RA, Eglitis MA, Anderson WF (1991) Expression of a foreign gene in cats reconstituted with retroviral vector infected autologous bone marrow. Blood 78:237–245

    PubMed  Google Scholar 

  • Miller AD, Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques 7:980–982

    PubMed  CAS  Google Scholar 

  • Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–4242

    PubMed  CAS  Google Scholar 

  • Miller AD, Garcia JV, von Suhr N, Lynch CM, Wilson C, Eiden MV (1991) Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol 65:2220–2224

    PubMed  CAS  Google Scholar 

  • Mitani K, Graham FL, Caskey CT (1994) Transduction of human bone marrow by adenoviral vector. Hum Gene Ther 5:941–948

    Article  PubMed  CAS  Google Scholar 

  • Muench MO, Firpo MT, Moore MAS (1993) Bone marrow transplanation with interleukin-1 plus kit-ligand ex vivo expanded bone marrow accelerates hematopoietic reconstitution in mice without loss of stem cell lineage and proliferative potential. Blood 81:3463–3473

    PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996). In vivo gene delivery and stable transduction of nondivid-ing cells by a lentiviral vector. Science 272:263–267

    Article  PubMed  CAS  Google Scholar 

  • Neering SJ, Hardy SF, Minamoto D, Spratt SK, Jordan CT (1996) Transduction of primitive human hematopoietic cells with recombinant adenovirus vectors. Blood 88:1147–1155

    PubMed  CAS  Google Scholar 

  • Nienhuis AW (1994) Gene transfer into hematopoietic stem cells. Blood Cells 20:141–150

    PubMed  CAS  Google Scholar 

  • Nolta JA, Dao MA, Wells S, Smogorzewska EM, Kohn DB (1996) Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune-deficient mice. Proc Natl Acad Sci USA 93:2414–2419

    Article  PubMed  CAS  Google Scholar 

  • Orlic D, Girard LJ, Jordan CT, Anderson SM, Cline AP, Bodine DM (1996) The level of mrna encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction. Proc Natl Acad Sci USA 93:11097–11102

    Article  PubMed  CAS  Google Scholar 

  • Petzer AL, Eaves CJ, Barnett MJ, Eaves AC (1997) Selective expansion of primitive normal hematopoietic cells in cytokine-supplemented cultures of purified cells from patients with chronic myeloid leukemia. Blood 90:64–69

    PubMed  CAS  Google Scholar 

  • Petzer AL, Hogge DE, Lansdorp PM, Reid DS, Eaves CJ (1996a) Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc Natl Acad Sci USA 93:1470–1474

    Article  PubMed  CAS  Google Scholar 

  • Petzer AL, Zandstra PW, Piret JM, Eaves CJ (1996b) Differential cytokine effects on primitive (cd34+cd38(-)) human hematopoietic cells—novel responses to flt3-ligand and thrombopoietin. J Exp Med 183:2551–2558

    Article  PubMed  CAS  Google Scholar 

  • Piacibello W, Sanavio F, Garetto L, Severino A, Bergandi D, Ferrario J, Fagioli F, Berger M, Aglietta M (1997) Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 89:2644–2653

    PubMed  CAS  Google Scholar 

  • Podsakoff G, Wong KJ, Chatterjee S (1994) Efficient gene transfer into nondi-viding cells by adeno-associated virus-based vectors. J Virol 68:5656–5666

    PubMed  CAS  Google Scholar 

  • Rebel VI, Dragowska W, Eaves CJ, Humphries RK, Lansdorp PM(1994) Amplification of Sca-1+ Lin- WGA+ cells in serum-free cultures containing steel factor, interleukin-6, and erythropoietin with maintenance of cells with long-term in vivo reconstituting potential. Blood 83:128–136

    Google Scholar 

  • Roe T, Reynolds T, Yu G, Brown P (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO 12:2099

    CAS  Google Scholar 

  • Roecklein BA, Torok-Storb B (1995) Functionally distinct human marrow stromal cell lines immortalized by transduction with the human papilloma virus e6/e7 genes. Blood 85:997–1005

    PubMed  CAS  Google Scholar 

  • Russell DW, Miller AD (1996) Foamy virus vectors. J Virol 70:217–222

    PubMed  CAS  Google Scholar 

  • Spangrude GJ, Brooks DM, Turnas DB (1995) Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 85:1006–1016

    PubMed  CAS  Google Scholar 

  • Spooncer E, Dexter TM (1983) Transplantation of long-term cultured bone marrow cells. Transplantation 35:624–627

    Article  PubMed  CAS  Google Scholar 

  • Springett GM, Moen RC, Anderson S, Blaese RM, Anderson WF (1989) Infection efficiency of T lymphocytes with amphotropic retroviral vectors is cell cycle dependent. J Virol 63:3865–3869

    PubMed  CAS  Google Scholar 

  • Stead RB, Kwok WW, Storb R, Miller AD (1988) Canine model for gene therapy: inefficient gene expression in dogs reconstituted with autologous marrow infected with retroviral vectors. Blood 71:742–747

    PubMed  CAS  Google Scholar 

  • Stiff PJ, Oldenberg d, Hsi E, Chen B, Douville J, Burhop S, Bayer R, Peace D, Malhotra D, Kerger C, Armstrong D, Muller T (1997) Successful hematopoietic engraftment following high dose chemotherapy using only ex-vivo expandedbone marrow grown in stromal based Bioreactors. ASCO Meeting, 17–20 May 1997, Denver CO (abstract)

    Google Scholar 

  • van Beusechem VW, Kukler A, Heidt PJ, Valerio D (1992) Long-term expression of human adenosine deaminase in rhesus monkeys transplanted with retrovirus-infected bone-marrow cells. Proc Natl Acad Sci USA 89:7640–7644

    Article  PubMed  Google Scholar 

  • Verfaillie CM (1992) Direct contact between human primitive hematopoietic progenitors and bone marrow stroma is not required for long-term in vitro hematopoiesis. Blood 79:2821–2826

    PubMed  CAS  Google Scholar 

  • von Kalle C, Kiem HP, Goehle S, Darovsky B, Heimfeld S, Torok SB, Storb R, Schuening FG (1994) Increased gene transfer into human hematopoietic progenitor cells by extended in vitro exposure to a pseudotyped retroviral vector. Blood 84:2890–2897

    Google Scholar 

  • Zandstra PW, Conneally E, Petzer AL, Piret JM, Eaves CJ (1997) Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proc Natl Acad Sci USA 94:4698–4703

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

R. E. Sobol K. J. Scanlon E. Nestaas

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glimm, H., von Kalle, C., Henschler, R., Mertelsmann, R. (1998). Hematopoietic Ex Vivo Gene Transfer. In: Sobol, R.E., Scanlon, K.J., Nestaas, E. (eds) Gene Therapy. Ernst Schering Research Foundation Workshop, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03577-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03577-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03579-5

  • Online ISBN: 978-3-662-03577-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics