Advertisement

Systematics and Evolution

  • K. Kubitzki
  • P. J. Rudall
  • M. C. Chase
Chapter
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 3)

Abstract

John Ray in his Historia Plantarum (1686–1704) was the first botanist to recognize cotyledon number as a useful means of subdividing flowering plants (Bancroft 1914). Although Linnaeus in his Philosophia Botanica (1751) did not explicitly mention this distinction between monocotyledons and dicotyledons, it was taken up by all later botanists. In most angiosperm classifications from Jussieu (1789) to Engler and Prantl (1887–89), monocotyledons were arranged in a position intermediate between nonangiosperms and dicotyledons, indicating a lower level of organization for monocotyledons than dicotyledons. However, with the spread of phylogenetic thinking, a ranalean origin for the monocotyledons was suggested (e.g., Bessey 1893), and Wettstein’s (1901–1907) textbook was the first to acknowledge a derived position for monocotyledons by treating them after the dicotyledons.

Keywords

General Reference Plastid Gene Royal Botanic Garden Silica Body Outgroup Comparison 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

  1. Bancroft, N. 1914. A review of literature concerning the evolution of monocotyledons. New Phytol. 13: 285–308.CrossRefGoogle Scholar
  2. Behnke, H.-D. 1976. The distribution of characters within an angiosperm system. Bot. Not. 129: 287–295.Google Scholar
  3. Behnke, H.-D. 1981. See general references.Google Scholar
  4. Behnke, H.-D. 1995. P-type sieve-element plastids and the systematics of the Arales (sensu Cronquist 1988) with S-type plastids in Pistia. Plant Syst. Evol. 195: 87–119.Google Scholar
  5. Bessey, C.E. 1893. Evolution and classification. Bot. Gaz. 18: 329–333.CrossRefGoogle Scholar
  6. Bessey, C.E. 1915. The phylogenetic taxonomy of flowering plants. Ann. Mo. Bot. Gard. 2: 109–164.CrossRefGoogle Scholar
  7. Brenner, G.J. 1996. Evidence for the earliest stage of angiosperm pollen evolution: a paleoequatorial section from Israel, pp. 91–115. In: Taylor, D.W., Hickey, L.J. (eds.) Flowering plant origin, evolution and phylogeny. New York: Chapman and Hall.CrossRefGoogle Scholar
  8. Buchenau, F. 1903. Alismataceae. In: Engler, A. (ed.) Das Pflanzenreich IV. 15. Leipzig: W. Engelmann.Google Scholar
  9. Burger, W.C. 1981. Heresy revised: the monocot theory of angiosperm origin. Evol. Theory (Chicago) 5: 189–225.Google Scholar
  10. Buxbaum, F. 1937. Die Entwicklungslinien der Lilioideae. Bot. Arch. 38: 213–293, 305–398.Google Scholar
  11. Carlquist, S., Schneider, E.S. 1997. Origins and nature of vessles in monocotyledons. I. Acorus (Acoraceae). Int. J. Plant Sci. 158: 51–56.CrossRefGoogle Scholar
  12. Chase, M.W. et al. 1993. See general references.Google Scholar
  13. Chase, M.W. et al. 1995. See general references.Google Scholar
  14. Chase, M.W. et al. 1995a. See general references.Google Scholar
  15. Chase, M.W. et al. 1996. See general references.Google Scholar
  16. Cheadle, V.I. 1942. The occurrence and types of vessels in the various organs of the plant in the Monocotyledoneae. Am. J. Bot. 29: 441–450.CrossRefGoogle Scholar
  17. Cronquist, A. 1981, 1988. See general references.Google Scholar
  18. Dahlgren, R.M.T. et al. 1985. See general references. Dahlgren, R.M.T., Clifford, H.T. 1982. See general references.Google Scholar
  19. Dahlgren, R.M.T., Rasmussen, N. 1983. See general references.Google Scholar
  20. Davis, J.I. 1995. A phylogenetic structure for the monocotyledons, as inferred from chloroplast DNA restriction site variation, and a comparison of measures of clade support. Syst. Bot. 20: 503–527.CrossRefGoogle Scholar
  21. Davis, J.I., Simmons, M.P., Stevenson, D.W., Wendel, J.F. 1998. Data decisiveness and data quality in phylogenetic analysis: an example from the monocots using using mitochondrial atpA sequences. Syst. Biol. (in press).Google Scholar
  22. Duvall, M.R. et al. 1993. See general references.Google Scholar
  23. Endress, P.K. 1987. The Chloranthaceae: reproductive structures and phylogenetic position. Bot. Jahrb. Syst. 109: 153–226.Google Scholar
  24. Endress, P.K. 1990. Evolution of reproductive structures and functions in primitive angiosperms (Magnoliidae). Mem. N. Y. Bot. Gard. 55: 5–34.Google Scholar
  25. Endress, P.K. 1994. Floral structure and evolution of primitive angiosperms: recent advances. Plant Syst. Evol. 192: 79–97.Google Scholar
  26. Endress, P.K. 1995. Major evolutionary traits of monocot flowers. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: sytematics and evolution, pp. 4379. Royal Botanic Gardens Kew.Google Scholar
  27. Engler, A. 1892. Die systematische Anordnung der monocotyledoneen Angiospermen. Abh. Preuss. Akad. Wiss. Berlin 1892. 55 pp.Google Scholar
  28. Engler, A. (ed.) 1925-> Die natürlichen Pflanzenfamilien, 2nd edn. Leipzig: W. Engelmann and Berlin: Duncker & Humblot.Google Scholar
  29. Engler, A., Prantl, K. (eds.) 1887–1889. Die natürlichen Pflanzenfamilien. II. Teil (Gymnospermae, Monocotyledoneae). Leizig: W. Engelmann.Google Scholar
  30. Erbar, C., Leins, P. 1994. Flowers in Magnoliidae and the origin of flowers in other subclasses of the angiosperms. I. The relationships between flowers of Magnoliidae and Alismatidae. Plant Syst. Evol. Suppl. 8: 193–208.Google Scholar
  31. Fay, M.F., Chase, M.W. 1996. Resurrection of Themidaceae for the Brodiaea alliance, and recircumscription of Alliaceae, Amaryllidaceae and Agapanthoideae. Taxon 45: 441–451.CrossRefGoogle Scholar
  32. French, J.C., Chung, M.G., Hur, Y.K. 1995. Chloroplast DNA phylogeny of the Ariflorae. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: sytematics and evolution, pp. 255–275. Royal Botanic Gardens, Kew.Google Scholar
  33. Frölich, D., Barthlott, W. 1988. See general references.Google Scholar
  34. Gaut, B.S., Muse, S.V., Clark, W.D., Clegg, M.T. 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J. Mol. Evol. 35: 292–303.PubMedCrossRefGoogle Scholar
  35. Goldblatt, P. 1995. The status of R. Dahlgren’s orders Liliales and Melanthiales. In: Rudall, P.J., Cribb, P.J.> Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution, pp. 181–200. Royal Botanic Gardens, Kew.Google Scholar
  36. Grayum, M.H. 1987. A summary of evidence and arguments supporting the removal of Acorus from the Araceae. Taxon 36: 723–729.CrossRefGoogle Scholar
  37. Grayum, M.H. 1991. Systematic embryology of the Araceae. Bot. Rev. 57: 167–203.CrossRefGoogle Scholar
  38. Greilhuber, J. 1995. Chromosomes of the monocotyledons (general aspects). In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution, pp. 379–414. Royal Botanic Gardens, Kew.Google Scholar
  39. Hallier, H. 1905. Ein zweiter Entwurf des natürlichen (phylogenetischen) Systems der Blütenpflanzen. Vorläufige Mitteilung. Ber. Dtsch. Bot. Ges. 23: 85–91.Google Scholar
  40. Hamby, K.R., Zimmer, E.A. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics, pp. 50–91. In: Soltis, P.S., Soltis, D.E., Doyle, J.J. (eds.) Molecular systematics of plants. New York: Chapman and Hall.CrossRefGoogle Scholar
  41. Harris, P.J., Hartley, R.D. 1980. See general references.Google Scholar
  42. Holttum, R.E. 1955. Growth habits of monocotyledons — variations on a theme. Phytomorphology 5: 399–413.Google Scholar
  43. Huber, H. 1969, 1977, 1991. See general references. Hutchinson, J. 1934. The families of flowering plants, Vol. 2. London: Macmillan.Google Scholar
  44. Jeffrey, E.C. 1917. The anatomy of woody plants. Chicago: University of Chicago Press.Google Scholar
  45. Jussieu, A.L. de 1789. Genera Plantarum secundum Ordines Naturales disposita. Paris: Hérissant & Barrois.Google Scholar
  46. Kellogg, E.A., Linder, H.P. 1995. Phylogeny of Poales. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution, pp. 511–542. Royal Botanic Gardens, Kew.Google Scholar
  47. Krause, K. 1930. See general references.Google Scholar
  48. Les, D.H., Haynes, R.R. 1995. Systematics of subclass Alismatidae: a synthesis of approaches. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution, pp. 353–377. Royal Botanic Gardens, Kew.Google Scholar
  49. Les, D.H., Schneider, E.L. 1995. The Nymphaeales, Alismatidae, and the theory of an aquatic monocotyledon origin, pp. 23–42. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.Google Scholar
  50. Les, D.H., Garvin, D.K., Wimpee, C.F. 1991. Molecular evolutionary history of ancient aquatic angiosperms. Proc. Natl. Acad. Sci. USA 88: 10119–10122.PubMedCrossRefGoogle Scholar
  51. Linder, H.P., Kellogg, E.A. 1995. Phylogenetic patterns in the commelinid clade. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution, pp. 473–496. Royal Botanic Gardens, Kew.Google Scholar
  52. Linnaeus, C. 1751. Philosophia botanica. Stockholm: G. Kiesewetter.Google Scholar
  53. Loconte, H., Stevenson, D.W. 1991. Cladistics of the Magnoliidae. Cladistics 7: 267–296.CrossRefGoogle Scholar
  54. Martin, W., Gierl, A., Saedler, H. 1989. Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 46–48.CrossRefGoogle Scholar
  55. Mayo, S.J., Bogner, J., Boyce, P. 1995. The Arales. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution, pp. 277–286. Royal Botanic Gardens, Kew.Google Scholar
  56. Mena, M., Ambrose, B.A., Meeley, R.B., Briggs, S.P., Yanofsky, M.F., Schmidt, R.J. 1996. Diversification of C-function activity in maize flower development. Science 274: 1537–1540.PubMedCrossRefGoogle Scholar
  57. Nadot, S., Bittar, G., Carter, L., Lacroix, R., Lejeune, B. 1995. A phylogenetic analysis of monocotyledons based on the chloroplast gene rps4, using parsimony and a new numerical phenetics method. Mol. Phylogenet. Evol. 4: 257–282.PubMedCrossRefGoogle Scholar
  58. Qiu, Y.L., Chase, M.W., Les, D.H., Parks, C.R. 1993. Molecular phylogenetics of the Magnoliidae: cladistic analysis of nucleotide sequences of the plastid gene rbcL. Ann. Mo. Bot. Gard. 80: 587–606.CrossRefGoogle Scholar
  59. Ray, J. 1686–1704. Historia Plantarum. London: H. Faithorne.Google Scholar
  60. Rudall, P. 1991. Lateral meristems and stem thickening growth in monocotyledons. Bot. Rev. 57: 150–163.CrossRefGoogle Scholar
  61. Rudall, P.J. 1994. The ovule and embryo sac in Xanthorroeaceae sensu lato. Flora 189: 335–351.Google Scholar
  62. Rudall, P.J. 1997. See general references.Google Scholar
  63. Rudall, P.J., Caddick, L.R. 1994. Investigation of the presence of phenolic compounds in monocotyledonous cell walls, using UV fluorescence microscopy. Ann. Bot. 74: 483–491.CrossRefGoogle Scholar
  64. Rudall, P., Chase, M.W. 1996. Systematics of Xanthorrhoeaceae sensu lato: evidence for polyphyly. Telopea 6: 629–647.Google Scholar
  65. Rudall, P.J., Furness, C.A. 1997. Systematics of Acorus: ovule and anther. Int. J. Plant Sci. 158: 640–651.CrossRefGoogle Scholar
  66. Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) 1995. Monocotyledons: systematics and evolution. 2 vols. Royal Botanic Gardens, Kew.Google Scholar
  67. Rudall, P.J. et al. 1997. See general references.Google Scholar
  68. Rudall, P.J., Prychid, C.J., Jones, C. 1998. Intra-ovarian trichomes in monocotyledons. In: Owens, S.J., Rudall, P.J., (eds.) Reproductive biology. Royal Botanic Gardens, Kew.Google Scholar
  69. Rudall, P.J., Stevenson, D.W., Linder, H.P. Submitted. Structure and systematics of Hanguana,a monocotyledon of uncertain affinity. Aust. Syst. Bot.Google Scholar
  70. Sattler, R., Singh, V. 1978. Floral organogenesis of Echinodorus amazonicus Rataj and floral construction of the Alismatales. Bot. J. Linn. Soc. 77: 141–156.CrossRefGoogle Scholar
  71. Schlittler, J. 1945. Untersuchungen über den Bau der Blütenstände im Bereich des Anthericumtypus (AsphodelinaeAnthericinae-Dianellinae). Ber. Schweiz. Bot. Ges. 55: 200–239.Google Scholar
  72. Schlittler, J. 1953. Blütenartikulation und Phyllokladien der Liliaceae organphylogenetisch betrachtet. Feddes Rep. 55: 154–258.Google Scholar
  73. Shaffer-Fehre, M. 1991. The position of Najas within the subclass Alismatidae (Monocotyledones) in the light of new evidence from seed coat structures in the Hydrocharitaceae. Bot. J. Linn. Soc. 107: 189–209.CrossRefGoogle Scholar
  74. Simpson, D. 1995. Relationships within Cyperales. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution, pp. 497–509. Royal Botanic Gardens, Kew.Google Scholar
  75. Singh, V., Sattler R. 1972. Floral development of Alisma triviale. Can. J. Bot. 50: 619–627.CrossRefGoogle Scholar
  76. Soltis, D.E. et al. 1987. See general references.Google Scholar
  77. Stevenson, D.W., Loconte, H. 1995. Cladistic analysis of monocotyledons. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution, pp. 543–578. Royal Botanic Gardens, Kew.Google Scholar
  78. Stockey, R.A., Hoffman, G.L., Rothwell, G.W. 1997. The fossil monocot Limnobiophyllum scutatum: resolving the phylogeny of Lemnaceae. Am. J. Bot. 84: 355–368.PubMedCrossRefGoogle Scholar
  79. Suessenguth, K. 1921. Beiträge zur Frage des systematischen Anschlusses der Monokotylen. Beih. Bot. Centralbl. 38, Abt. 2: 1–79.Google Scholar
  80. Sytsma, K.J., Baum, D.A. 1996. Molecular phylogenies and the diversification of the angiosperms, pp. 314–340. In: Taylor, D.W., Hickey, L.J. (eds.) Flowering plant origin, evolution and phylogeny. New York: Chapman and Hall.CrossRefGoogle Scholar
  81. Takhtajan, A. 1959. Die Evolution der Angiospermen. Jena: G. Fischer.Google Scholar
  82. Takhtajan, A. 1980, 1987, 1997. See general references.Google Scholar
  83. Thorne, R.F. 1992. Classification and geography of the flowering plants. Bot. Rev. 58: 225–348.CrossRefGoogle Scholar
  84. Tillich, H.-J. 1985. Keimlingsbau und verwandtschaftliche Beziehungen der Araceae. Gleditschia 13: 63–73.Google Scholar
  85. Tillich, H.-J. 1995. Seedlings and systematics in monocotyledons. In: Rudalll, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution, pp. 303–352. Royal Botanic Gardens, Kew.Google Scholar
  86. Tomlinson, P.B. 1990. The structural biology of palms. Oxford: Clarendon Press.Google Scholar
  87. Tomlinson, P.B. 1995. Non-homology of vascular organisation in monocotyledons and dicotyledons, pp. 589–622. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.Google Scholar
  88. Velenovskÿ, J. 1904. Die gegliederten Blüten. Beih. Bot. Centralbl. 16: 289–300.Google Scholar
  89. Wagner, P. 1977. Vessel types of the monocots: a survey. Bot. Not. 130: 383–402.Google Scholar
  90. Wettstein, R.R. von 1901–1907. Handbuch der systematischen Botanik. Leipzig and Wien: F. Deuticke.Google Scholar
  91. Wolfe, K.H., Gouy, M., Yang, Y.-W., Sharp, P.M., Li, W.-H. 1989. Date of monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. U. S. A. 86: 6201–6205.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • K. Kubitzki
  • P. J. Rudall
  • M. C. Chase

There are no affiliations available

Personalised recommendations