• J. G. Conran
  • M. N. Tamura
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 3)


Terrestrial or rarely epiphytic herbs with caulescent, perennial or annual aerial stems, or rosettes of leaves to 1 m tall arising from subterrancean or exposed rhizomes with fibrous or tuberous roots. Leaves alternate, distichous, opposite or verticillate, sessile or more or less petiolate, with or without sheathing base; blades entire, ovate to linear, sometimes sagittate, with 1-few prominent parallel main veins, and between them, parallel or transverse venation. Inflorescences axillary or terminal racemes or spikes, or terminal reduced dibotrya or panicles, or single or several flowers in leaf axils. Flowers hermaphrodite or rarely unisexual and dioecious, actinomorphic to slightly zygomorphic, hypogynous or perigynous, erect to pendulous; tepals petaloid, in 2 whorls of 3 (most genera), 4–5 or 2 dimerous whorls, both whorls of similar length, sometimes united to form a perianth tube, articulating at the base of the ovary or along the pedicel, often with septal nectaries, white, sometimes spotted with purplish red, green, yellow mauve to purple, or purplish brown. Stamens 4, 6 (most genera), 8, 10 or 12 in 2 whorls, filaments free, connate, adnate to the tepals or attached to a corona; anthers introrse, basifixed or dorsifixed, dehiscing longitudinally. Gynoecium syncarpous, ovary 2-5-locular with axile intrusive placentae; style erect, filiform or stout; stigmas capitate, 3-lobate or expanded into a shieldlike structure; ovules anatropous, campylotropous or more or less atropous borne in 2 rows. Fruit a blue, purple, brown, black, red or yellow berry, dry dehiscent capsule (Gonioscypha), drupe (Tricalistra) or dry, papery, indehiscent structure which ruptures during seed development (Ophiopogoneae); seeds single to many, more or less ovoid to globose, yellow-brown or berrylike, blue or black at maturity and with a fleshy sarcotesta. Embryo linear, at least 1/2 as long as seed; embedded in a copious starchless endosperm.


Middle Eocene Tuberous Root Floral Bract Partial Inflorescence Floral Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

  1. Bailey, F.M. 1884. Contribution to the Queensland flora. Proc. R. Soc. Queensl. 1: 8–19.Google Scholar
  2. Baker, J.G. 1875. Revision of the genera and species of Asparagaceae. J. Linn. Soc. Bot. 14: 508–632.CrossRefGoogle Scholar
  3. Bell, W.A. 1949. Uppermost Cretaceous and Paleocene floras of Western Alberta. Bull. Can. Dep. Mines Res. Geol. Surv. 13: 1–231.Google Scholar
  4. Bentham, G., Hooker, J.D. 1883. Liliaceae. In: Bentham, G., Hooker, J.D. (eds.) Genera Plantarum. London: L. Reeve pp. 748–836.Google Scholar
  5. Bierzychudek, P. 1982. Life histories and demography of shade-tolerant temperate forest herbs. New Phytol. 90: 757–776.CrossRefGoogle Scholar
  6. Björnstad, I. 1970. Comparative embryology of Asparagoideae — Polygonateae, Liliaceae. Nytt. Mag. Bot. 17: 169–207.Google Scholar
  7. Boyd, L. 1932. Monocotyledonous seedlings. Trans. Proc. Edinb. Bot. Soc. 31: 1–24.Google Scholar
  8. Brummitt, R.K. 1992. Vascular plant families and genera. London: Royal Botanic Gardens Kew.Google Scholar
  9. Chang, H.-J., Hsu, C.-C. 1974. A cytotaxonomical study on some Formosan Liliaceae. Taiwania 19: 58–71.Google Scholar
  10. Chase, M.W. et al. 1995. See general references.Google Scholar
  11. Clifford, H.T. 1987. Liliaceae (part). In: George, A.S. (ed.) Flora of Australia, Vol. 45. Canberra: AGPS pp. 148–421.Google Scholar
  12. Conover, M.H. 1991. Epidermal patterns of the reticulate-veined Liliiflorae and their parallel-veined allies. Bot. J. Linn. Soc. 107: 295–312.CrossRefGoogle Scholar
  13. Conran, J.G. 1985. The taxonomic affinities of the genus Drymophila (Liliaceae s.l.). Ph.D. Thesis. St. Lucia: University of Queensland.Google Scholar
  14. Conran, J.G. 1987. A phenetic study of the relationships of the genus Drymophila R. Br. within the reticulate-veined Liliiflorae. Aust. J. Bot. 35: 283–300.CrossRefGoogle Scholar
  15. Conran, J.G. 1989. Cladistic analyses of some net-veined Liliiflorae. Plant Syst. Evol. 168: 123–141.Google Scholar
  16. Corbet, S.A., Chapman, H., Saville, N. 1988. Vibratory pollen collection and flower from: bumblebees on Actinidia, Symphytum, Borago and Polygonatum. Funct. Ecol. 2: 146–156.CrossRefGoogle Scholar
  17. Cutler, D.F. 1992. Vegetative anatomy of Ophiopogoneae. Bot. J. Linn. Soc. 110: 385–419.CrossRefGoogle Scholar
  18. Dahlgren, R.M.T. et al. 1985. See general references.Google Scholar
  19. Daumann, E. 1970. Das Blütennektarium der Monocotyledonen unter besonderer Berücksichtigung seiner systematischen und phylogenetischen Bedeutung. Feddes Repert. 80: 463–590.CrossRefGoogle Scholar
  20. Eames, A.J. 1961. The morphology of the angiosperms. New York: McGraw Hill.Google Scholar
  21. Emons, R.W. 1945. A revision of the Central American species of Smilacina. Ann. Mo. Bot. Gard. 32: 395–411.CrossRefGoogle Scholar
  22. Erdtman, G. 1952. See general references.Google Scholar
  23. Erwin, D.M., Stockey, R.A. 1991. Soleredera rhizomorpha gen. et sp. nov. A permineralized monocotyledon from the Middle Eocene Princeton Chert of British Columbia, Canada. Bot. Gaz. 152: 231–247.Google Scholar
  24. Farnsworth, N.R., Blomster, R.N., Quimby, M.N., Schermerhorn, J.W. (eds.) 1971. The Lynn index, Vol. 7. New York: N.R. Farnsworth.Google Scholar
  25. Fedorov, A.A. (ed.) 1969. See general references.Google Scholar
  26. Fowden, L. 1955. Azetidine-2-carboxylic acid: a new constituent of plants. Nature 176: 347–348.CrossRefGoogle Scholar
  27. Fowden, L. 1959. Nitrogenous compounds and nitrogen metabolism in the Liliaceae. 6. Changes in the nitrogenous composition during the growth of Convallaria and Polygonatum. Biochem. J. 71: 643–648.PubMedGoogle Scholar
  28. Fowden, L., Steward, F.C. 1957. Nitrogenous compounds and nitrogen metabolism in the Liliaceae. 1. The occurrence of soluble nitrogen compounds. Ann. Bot. 21: 53–67.Google Scholar
  29. Gagnepain, M.F. 1934a. Les aspidistrées d’Indo-Chine. Bull. Mus. Natl. Hist. Nat. Paris 2: 189–192.Google Scholar
  30. Gagnepain, M.F. 1934b. Quelques liliacées nouvelles d’Indo Chine. Bull. Soc. Bot. Fr. 81: 286–289.Google Scholar
  31. Gorham, A. 1953. The question of fertilization in Smilacina racemosa. Phytomorphology 3: 44–50.Google Scholar
  32. Herr, J.M., Jr 1984. Embryology and taxonomy. In: Johri, B.M. (ed.) Embryology of the angiosperms. Berlin, Heidelbery, New York: Springer, pp. 647–696.CrossRefGoogle Scholar
  33. Heslop-Harrison, Y., Shivanna, K.R. 1977. The receptive surface of the angiosperm stigma. Ann. Bot. 41: 1233–1258.Google Scholar
  34. Hitchcock, C.L., Cronquist, A., Ownbey, M., Thompson, J.W. 1969. Vascular plants of the Pacific Northwest, Vol. 1. Washington: University of Washington Press.Google Scholar
  35. Huang, J., Li, H. 1990. Study on the taxonomic system of the genus Tupistra. Acta Bot. Yunn., Suppl. 3: 49–61.Google Scholar
  36. Huber, H. 1969. See general references.Google Scholar
  37. Hume, H.H. 1961. Ophiopogon-Liriope complex. Baileya 9: 134–158.Google Scholar
  38. Iconographia Cormophytorum Sinicorum, Vol. 5. Beijing: Science Press.Google Scholar
  39. Jeffrey, C. 1980. The genus Polygonatum (Liliaceae) in eastern Asia. Kew Bull. 34: 435–471.CrossRefGoogle Scholar
  40. Jeffrey, C. 1982. Further note on eastern Asian Polygonatum (Liliaceae). Kew Bull. 37: 335–339.CrossRefGoogle Scholar
  41. Jessop, J. 1976. A revision of Peliosanthes (Liliaceae). Blumea 23: 141–159.Google Scholar
  42. Jessop, J. 1979. Liliaceae I. Fl. Males. I. 9: 189–235.Google Scholar
  43. Kanmoto, T., Mimaki, Y., Sashida, Y., Koike, K., Ohmoto, T. 1994. Steroidal constituents from the inhibitory activity on CAMP phosphodiesterase. Chem. Pharmac. Bull. (Tokyo) 42: 926–931.CrossRefGoogle Scholar
  44. Kato, M. 1995. The aspidistra and the amphipod. Nature 377: 293.CrossRefGoogle Scholar
  45. Kawano, S., Ihara, M., Suzuki, M. 1968. Biosystematic studies in Maianthemumn (Liliaceae-Poygonateae). II. Geography and ecological life history. Jpn. J. Bot. 20: 35–65.Google Scholar
  46. Kawano, S., Suzuki, M., Kojima, S. 1971. Biosystematic studies in Maianthemum (Liliaceae-Poygonateae). V. Variation in gross morphology, karyology and ecology of North American populations of M. dilata turn sensu lato. Bot. Mag. Tokyo 84: 299–318.Google Scholar
  47. Kawano, S., Ihara, M., Suzuki, M., Iltis, H.H. 1967. Biosystematic studies on Maianthemum (Liliaceae-Polygonateae). I. Somatic chromosome number and morphology. Bot. Mag. (Tokyo) 80: 345–352.Google Scholar
  48. Koketsu, M., Kim, M., Yamamoto, T. 1996. Antifungal activity against food-borne fungi of Aspidistra elatior Blume. Phytochemistry 44: 301–303.Google Scholar
  49. Krause, K. 1930. Liliaceae. In: Engler, A., Prantl, K. (eds.) Die natürlichen Pflanzenfamilien 2nd edn., Vol. 15a. Leipzig: W. Engelmann pp. 227–386.Google Scholar
  50. Kunkel, G. 1984. Plants for human consumption. Koenigstein: Kluwer.Google Scholar
  51. LaFrankie, J.V. 1986a. Transfer of species of Smilacina to Maianthemum (Liliaceae). Taxon 35: 584–589.CrossRefGoogle Scholar
  52. LaFrankie, J.V.J. 1986b. A new species of Maianthemum (Liliaceae) from Costa Rica with an upright and aerial rhizome. Am. J. Bot. 73: 1258–1260.CrossRefGoogle Scholar
  53. Larsen, K. 1966. Two new Liliaceae from the Khao Yai National Park. Bot. Not. 119: 196–200.Google Scholar
  54. Liu, T., Ying, S. 1978. Liliaceae. In: Li, H., Liu, T., Huang, T., Koyama, T., DeVol, C.E. (eds.) Flora of Taiwan, Vol. 5. Taipei: Epoch Publishers pp. 40–84.Google Scholar
  55. Loew, E. 1895. Das Leben der Blüten. Berlin: Dümmler.Google Scholar
  56. Lotsy, J.P. 1911. Vorträge über botanische Stammesgeschichte Cormophyta Siphonogamia. Jena: G. Fischer.Google Scholar
  57. Mabberley, D.J. 1987. The plant book. Cambridge: Cambridge University Press.Google Scholar
  58. Migliorato, E. 1910. Sull’impollinazione di Rohdea japonica per mezzo delle formiche. Ann. Bot. 8: 241–242.Google Scholar
  59. Mulay, B.N., Deshpande, B.D. 1959. Velamen in terrestrial monocots–I. Ontogeny and morphology in the Liliaceae. J. I.dian Bot. Soc. 38: 383–390.Google Scholar
  60. Nakai, T. 1936. Subdivision of Convallariaceae. J. Jpn. Bot. 12: 145–150.Google Scholar
  61. Ono, T. 1928. Endosperm formation in the Liliaceae. Bot. Mag. Tokyo 42: 445–449.Google Scholar
  62. Owenby, B.P. 1944. The liliaceous genus Polygonatum in North America. Ann. Mo. Bot. Gard. 31: 373–413.CrossRefGoogle Scholar
  63. Patten, K., Wang, J. 1994. Metham controls false lily-of-the-valley (Maianthemum dilatatum) in cranberry (Vaccinium macrocarpon). Weed Tech. 8: 270–276.Google Scholar
  64. Pauli, G.F. 1995. The cardenolids of Speirantha convallarioides. Planta Medica 61: 162–166.PubMedCrossRefGoogle Scholar
  65. Peng, C., Chu, G., Guo, J. 1994. Autumn food composition of the silver pheasant and white-necked long-tailed pheasant in Nianzhu Forest Farm, Daganshan, Jiangxi Province. For. Res. 7: 574–578.Google Scholar
  66. Piper, J.K. 1986a. Effects of habitat and size of fruit display on removal of Smilacina stellata (Liliaceae) fruits. Can. J. Bot. 64: 1050–1054.CrossRefGoogle Scholar
  67. Piper, J.K. 1986b. Seasonality of fruit characters and seed removal by birds. Oikos 46: 303–310.CrossRefGoogle Scholar
  68. Piper, J.K. 1989. Light, flowering, and fruiting within patches of Smilacina racemosa and Smilacina stellata (Liliaceae). Bull. Torrey Bot. Club 116: 247–257.CrossRefGoogle Scholar
  69. Ramstad, E. 1953. Über das Vorkommen und die Verbreitung von Chelidonsäure in einigen Pflanzenfamilien. Pharm. Acta. Helv. 28: 45–55.PubMedGoogle Scholar
  70. Rao, P.R.M., Kaur, A. 1979a. Embryology and systematic position of Ophiopogon intermedius. Proc. Indian Natl. Sci. Acad. B. 45: 175–187.Google Scholar
  71. Rao, P.R.M., Kaur, A. 1979b. Sporogenesis and gametophtyes of Polygonatum cirrhifolium. Phytomorphology 29: 9397.Google Scholar
  72. Richards, A.J. 1986. Plant breeding systems. London: Allen and Unwin.Google Scholar
  73. Ross-Craig, S. 1972. Drawings of British plants, Vol. 29. London: Bell and Sons.Google Scholar
  74. Satô, D. 1942. Karyotype alternation and phylogeny in Liliaceae and allied families. Jpn. J. Bot. 12: 57–161.Google Scholar
  75. Schulze, W. 1982. Beiträge zur Taxonomie der Liliifloren X. Asparagaceae. Wiss. Z. Friedrich Schiller Univ. Jena 31: 309–330.Google Scholar
  76. Stenar, H. 1953. The embryo sac type in Smilacina, Polygonatum and Theropogon. Phytomorphology 3: 326–338.Google Scholar
  77. Takhtajan, A.L. 1982. See general references.Google Scholar
  78. Tamura, M.N. 1990. Biosystematic studies on the genus Polygonatum (Liliaceae) I. Karyotype analysis of species indigenous to Japan and its adjacent regions. Cytologia 55: 443–466.CrossRefGoogle Scholar
  79. Tamura, M.N. 1991. Biosystematic studies on the genus Polygonatum (Liliaceae) II. Morphology of staminal filaments of species indigenous to Japan and its adjacent regions. Acta Phytotaxon. Geobot. 42: 1–18.Google Scholar
  80. Tamura, M.N. 1993. Biosystematic studies on the genus Polygonatum (Liliaceae) III. Morphology of staminal filaments and karyology of eleven Eurasian species. Bot. Jahrb. Syst. 115: 1–26.Google Scholar
  81. Tamura, M.N. 1995. A karyological review of the orders Asparagales and Liliales (Monocotyledonae). Feddes Repert. 106 (12): 83–111.Google Scholar
  82. Tamura, M.N., Ogisu, M., Xu, J.M. 1997. Heteropolygonatum, a new genus of the tribe Polygonateae (Convallariaceae) from West China. Kew Bull. 52: 949–956.Google Scholar
  83. Tanaka, T. 1976. Tanaka’s cyclopedia of edible plants of the world. Tokyo: Keigaku Publ.Google Scholar
  84. Tillich, H.-J. 1995. Seedlings and systematics in monocotyledons. In: Rudall, P.J., Cribb, P., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution. London: Royal Botanic Gardens, Kew.Google Scholar
  85. Utech, F.H. 1979. Floral vascular anatomy of the Himalayan Theropogon pallidus Maxim. (Liliaceae-Convallarieae). Ann. Carnegie Mus. 48: 25–41.Google Scholar
  86. Vaikos, N.P., Markandaya, S.K., Pai, R.M. 1989. Floral anatomy of the Liliaceae: tribe Convallarieae. Proc. Indian Acad. Sci. (Plant Sci.) 99: 91–95.Google Scholar
  87. van der Pijl, L. 1995. Some remarks on myrmecophytes. Phytomorphology 5: 190–200.Google Scholar
  88. Vogel, S. 1990. The role of scent glands in pollination. Washington: Smithsonian Institution Libraries.Google Scholar
  89. Wagner, W.M. 1977. Vessel types of monocotyledons: a survey. Bot. Not. 130: 383–402.Google Scholar
  90. Wang, F.T., Tang, T. (eds.) 1978. Flora Reipublicae Popularis Sinicae Tomus 15. 280 pp. Beijing: Science Press. (in Chinese).Google Scholar
  91. Yamamura, Y. 1984. Matter production processes of Reineckea carnea Kunth, an evergreen forest floor herb in the warm-temperate region of Japan. Bot. Mag. Tokyo 97: 179–191.CrossRefGoogle Scholar
  92. Yang, Q.E., Hong, D.Y. 1993. Karyotype study of the genus Theropogon. Acta Bot. Yunnan. 15: 263–268.Google Scholar
  93. Zweigelt, F. 1913. Vergleichende Anatomie der Asparagoideae, Ophiopogonoideae, Aletroideae, Luzuriagoideae und Smilacoideae nebst Bemerkungen über die Beziehungen Ophiopogonoideae und Dracaenoideae. Denkschr. Akad. Wiss. Wien 88: 397–476.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. G. Conran
  • M. N. Tamura

There are no affiliations available

Personalised recommendations