Skip to main content

The Keratocyte Cytoskeleton: A Dynamic Structural Network

  • Conference paper
Dynamical Networks in Physics and Biology

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 10))

  • 171 Accesses

Abstract

Self directed movement is a quality we inherently identify with living things. Among multicellular animals the independent crawling of cells or groups of cells is important during embryonic development, wound healing, the cellular responses of the immune system, and tumor metastasis. As an introduction to my own studies of cell movement I would like to briefly highlight the development of ideas concerning active cell movement due to contractile forces generated inside the cell, and passive cell movement due to surface tension forces generated at the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercrombie M. and Heaysman J.E.M., Observations on the social behavior of cells in tissue culture. II, Exp. Cell. Res. 6 (1954) 293–306.

    Article  Google Scholar 

  2. Abercrombie M., Heaysman J.E.M. and Pegrum S.M., The locomotion of fibroblasts in culture. I. Movements of the leading edge, Exp. Cell. Res. 59 (1970a) 393–398.

    Article  Google Scholar 

  3. Abercrombie M., Heaysman J.E.M. and Pegrum S.M., The locomotion of fibroblasts in culture. II. “Ruffling”, Exp. Cell. Res. 60 (1970b) 437–444.

    Article  Google Scholar 

  4. Anderson K.I., Wang Y.-L. and Small J.V., Coordination of protrusion and translocation of the keratocyte involves rolling of the cell body, J. Cell. Biol. 134 (1996) 1209–1218.

    Article  Google Scholar 

  5. Armstrong P.B. and Parenti D., Cell sorting in the presence of cytochalasin B, J. Cell. Biol. 55 (1972) 542–553.

    Article  Google Scholar 

  6. Astbury W.T., The Croonian Lecture: On the structure of biological fibres and the problem of muscle, Proc. R. Soc. London 134 (1947) 303–328.

    Article  ADS  Google Scholar 

  7. Bereiter-Hahn J., Strohmeier R., Kunzenbacher I., Beck K. and Vöth M., Locomotion of Xenopus epidermis cells in primary culture, J. Cell. Sci. 52 (1981) 289–311.

    Google Scholar 

  8. Bershadsky A.D. and Vasiliev J.M., Cytoskeleton. In Cellular Organelles, edited by P. Siekevitz (Plenum Press, New York, 1988).

    Google Scholar 

  9. Beyers B.a.P., K.R., Oriented microtubules in elongating cells of the developing lens rudiement after induction, Proc. Nat. Acad. Sci. USA 52 (1964) 1091–1099.

    Article  ADS  Google Scholar 

  10. Brenner S.L. and Korn E.D., Substoichiometric concentrations of cytochalasin D inhibit actin polymerization, J. Biol. Chem. 254 (1979) 9982–9985.

    Google Scholar 

  11. Buckley I.K. and Porter K.R., Cytoplasmic fibrils in living cultured cells, Protoplasma 64 (1967) 349–3 80.

    Google Scholar 

  12. Burridge K. and Chrzanowska-Wodnicka M., Focal adhesions, contractility, and cell signaling, Ann. Rev. Cell. Dev. Biol. 12 (1996) 463–519.

    Article  Google Scholar 

  13. Bütschli O., Untersuchungen über mikroskopische Schäume und das Protoplasma (W. Engelman, Leipzig, 1982).

    Google Scholar 

  14. Carter S.B., Haptotaxis and the mechanism of cell motility, Nature 213 (1967a) 256–260.

    Article  ADS  Google Scholar 

  15. Carter S.B., Effects of cytochalasins on mammalian cells, Nature 213 (1967b) 261–264.

    Article  ADS  Google Scholar 

  16. Carter S.B., Cell movement and cell spreading: A passive or an active process? Nature 225 (1970) 858–859.

    Article  ADS  Google Scholar 

  17. Chen W.-T., Induction of spreading during fibroblast movement, J. Cell. Biol. 81 (1979) 684–691.

    Article  Google Scholar 

  18. Cloney R.A., Cytoplasmic filaments and cell movements: Epidermal cells during ascidian metamorphosis, J. Ultrastruct. Res. 14 (1966) 300–328.

    Article  Google Scholar 

  19. Cooper J.A., The role of actin polymerization in cell motility, Ann. Rev. Physiol. 53 (1991) 585–605.

    Article  Google Scholar 

  20. De Bruyn P.P.H., Theories of amoeboid movement, Quart. Rev. Biol. 22 (1947) 1–24.

    Article  Google Scholar 

  21. Dujardin F., Recherches sur les organismes inférieurs, Ann. Sci. Nat. Zool. 4 (1835) 343–377.

    Google Scholar 

  22. Dujardin F., Mémoire sur l’organisation des Infusiores, Ann. Sci. Nat. Zool. 10 (1839) 230–315.

    Google Scholar 

  23. Dunn G.A., Mechanisms of fibroblast locomotion. In Cell Adhesion and Motility, edited by A.S.G. Curtis and J.D. Pitts (Cambridge University Press, Cambridge, 1980).

    Google Scholar 

  24. Ehrenberg C.G., Organisation, Systematik und geographisches Verhaltniss der Infusionsthierchen (F. Dümmler, Berlin, 1830).

    Google Scholar 

  25. Ehrenberg C.G., Zur Erkenntniss der Organisation in der Richtung des kleinsten Raumes (F. Dümmler, Berlin, 1832).

    Google Scholar 

  26. Euteneuer U. and Schliwa M., Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules, Nature 310 (1984) 58–61.

    Article  Google Scholar 

  27. Flanagan M.D. and Lin S., Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin, J. Biol. Chem. 255 (1980) 835–838.

    Google Scholar 

  28. Goldacre R.J. and Lorch I.J., Folding and unfolding of protein molecules in relation to cytoplasmic streaming, amoeboid movement and osmotic work, Nature 166 (1950) 497–500.

    Article  ADS  Google Scholar 

  29. Goodrich H.B., Cell behavior in tissue cultures, Biol. Bull. 46 (1924) 252–262.

    Article  Google Scholar 

  30. Harris A., Behaviour of cultured cells on substrata of variable adhesiveness, Exp. Cell. Res. 77 (1973) 285–297.

    Article  Google Scholar 

  31. Harris A.K., Stopak D. and Wild P., Fibroblast traction as a mechanism for collagen morphogenesis, Nature 290 (1981) 249–251.

    Article  ADS  Google Scholar 

  32. Heath J. and Holifield B., Actin alone in lamellipodia, Nature 352 (1991) 107–108.

    Article  ADS  Google Scholar 

  33. Hill A.V., The viscous elastic properties of smooth muscle, Proc. R. Soc. London 100 (1926) 108–115.

    Article  ADS  Google Scholar 

  34. Hoffman-Berling H. and Weber H.H., Vergleich der Motilität von Zellmodellen und Muskelmodellen, Biochem. Biophys. Acta. 10 (1953) 629–630.

    Article  Google Scholar 

  35. Hyman L.H., Metabolic gradients in amoeba and their relation to the mechanism of amoeboid movement, J. Exp. Zool. 24 (1917) 55–99.

    Article  Google Scholar 

  36. Hynes R.O. and Lander A.D., Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons, Cell. 68 (1992) 303–322.

    Article  Google Scholar 

  37. Ishikawa H., Bischoff R. and Holtzer H., Formation of arrowhead complexes with heavy meromyosin in a variety of cel l types, J. Cell. Biol. 43 (1969) 312–328.

    Article  Google Scholar 

  38. Janmey P.A., Cunningham C.C., Oster G.F. and Stossel T.P., Cytoskeletal networks and osmotic pressure in relation to cell structure and motility. In Mechanics of Swelling. edited by T.K. Karalis (Springer-Verlag, Berlin, 1992) pp. 333–346.

    Chapter  Google Scholar 

  39. Jennings H.S., Contributions to the study of the behavior of lower organisms, 6. The movements and reactions of amoeba (Carnegie Inst. Wash. Publ., 1904).

    Book  Google Scholar 

  40. Kucik D.F., Elson E. and Sheetz M.P., Forward transport of glycoproteins on leading lamellipodia in locomoting cells, Nature 340 (1989) 315–317.

    Article  ADS  Google Scholar 

  41. Lazarides E. and Weber K., Actin antibody: the specific visualization of actin filaments in non-muscle cells, Proc. Natl. Acad. Sci. USA 71 (1974) 2268–2272.

    Article  ADS  Google Scholar 

  42. Lee J., Leonard M., Oliver T., Ishihara A. and Jacobson K., Traction forces generated by locomoting keratocytes, J. Cell. Biol. 127 (1994) 1957–1964.

    Article  Google Scholar 

  43. Lin C.-H. and Forscher P., Growth cone advance is inversely proportional to retrograde f-actin flow, Neuron 14 (1995) 763–771.

    Article  Google Scholar 

  44. Loeb L., Amoeboid movement, tissue formation and consistency of protoplasm, Am. J. Psyiol. 56 (1922) 140–167.

    Google Scholar 

  45. Mast S.O. and Root F.M., Observations on ameba feeding on rotifers, nematodes, and ciliates, and their bearing on the surface tension theory, J. Exp. Zool. 21 (1916) 33 – 49.

    Article  Google Scholar 

  46. Mitchison T.J. and Kirschner M.H., Cytoskeletal dynamics and nerve growth, Neuron 1 (1988) 761–772.

    Article  Google Scholar 

  47. Mogilner A. and Oster G., Cell motility driven by actin polymerization, Biophys. J. 71 (1996) 3030–3045.

    Article  ADS  Google Scholar 

  48. Okabe S. and Hirokawa N., Incorporation and turnover of biotin-labeled actin microinjected into fibroblastic cells: An immonoelectron microscopic study, J. Cell. Biol. 109 (1989) 1581–1595.

    Article  Google Scholar 

  49. Oliver T., Lee J. and Jacobson K., Forces exerted by locomoting cells, Semin. Cell. Biol. 5 (1994) 139–147.

    Article  Google Scholar 

  50. Peskin C., Odell G. and Oster G., Cellular motions and thermal fluctions: The Brownian ratchet, Biophys. J. 65 (1993) 316–324.

    Article  ADS  Google Scholar 

  51. Schroeder T.E., The role of “contractile” ring filaments in dividing Arbacia egg, Biol. Bull. 137 (1969) 413–414.

    Google Scholar 

  52. Small J.V., Isenberg G. and Celis J.E., Polarity of actin at the leading edge of cultured cells, Nature 272 (1978) 638–639.

    Article  ADS  Google Scholar 

  53. Small J.V., Rohlfs A. and Herzog M., Actin and cell movement. In Cell Behaviour: Adhesion and Motility, edited by G. Jones, C. Wigley and R. Warn (The Company of Biologists Limited, Cambridge, 1993) pp. 57–71.

    Google Scholar 

  54. Small J.V., Herzog M. and Anderson K., Actin filament organization in the fish keratocyte lamellipodium, J. Cell. Biol. 129 (1995) 1275–1286.

    Article  Google Scholar 

  55. Spooner B.S. and Wessels N.K., Effects of cytochalasin B upon microfilaments involved in morhpogenesis of salivary epithelium, Proc. Nat. Acad. Sci. 66 (1970) s.

    Article  Google Scholar 

  56. Steinberg M. S., Reconstruction of tissues by dissociated cells, Science 141 (1963) 401.

    Article  ADS  Google Scholar 

  57. Steinberg M.S., The problem of adhesive selectivity in cellular interactions, Symp. Soc. Study Dey. Growth 22 (1964) 321.

    Google Scholar 

  58. Steinberg M.S. and Wiseman L.L., Do morphogenetic tissue rearrangements require active cell movements? J. Cell. Biol. 55 (1972) 606–615.

    Article  Google Scholar 

  59. Szent-Gyorgyi A., Chemistry of Muscle Contraction (Academic Press, New York, 1947).

    Google Scholar 

  60. Takeichi M., Cadherins: A molecular family important in selective cell-cell adhesion, Ann. Rev. Biochem. 59 (1990) 237–352.

    Article  Google Scholar 

  61. Theriot J.A. and Mitchison T.J., Actin microfilament dynamics in locomoting cells, Nature 352 (1991) 126–131.

    Article  ADS  Google Scholar 

  62. Wang Y.-L., Exchange of actin subunits at the leading edge of living fibroblasts: Possible role of treadmilling, J. Cell. Biol. 101 (1985) 597–602.

    Article  Google Scholar 

  63. Wegner A., Head to tail polymerization of actin, J. Mol. Biol. 108 (1976) 139–150.

    Article  Google Scholar 

  64. Wessells N.K., Spooner B.S., Ash J.F., Bradley M.O., Luduena M.A., Taylor E.L., Wrenn J.T. and Yamada K.M., Microfilaments in cellular and developmental processes, Science 171 (1971) 135–143.

    Article  ADS  Google Scholar 

  65. Wolpert L., Macpherson I. and Todd I., Cell spreading and cell movement: An active or a passive process? Nature 223 (1969) 512–513.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag France

About this paper

Cite this paper

Anderson, K.I. (1998). The Keratocyte Cytoskeleton: A Dynamic Structural Network. In: Beysens, D.A., Forgacs, G. (eds) Dynamical Networks in Physics and Biology. Centre de Physique des Houches, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03524-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03524-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65349-3

  • Online ISBN: 978-3-662-03524-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics