Advertisement

An Absolute Gravimeter and Vibration Disturbances: A Frequency Responses Method

  • S. M. Svetlov
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 117)

Abstract

Some asymptotic properties of the linear least-squares approximation are discussed and applied to an absolute gravimeter analysis. Simple expressions to estimate standard errors of the second-order linear model parameters are derived. As a result of the frequency-domain analysis, an absolute gravimeter is approximated as a low-pass filter. It is shown that, in general, equally spaced in time data location provides lower errors due to vibrations than that of the equally spaced in distance one.

Keywords

Sine Wave Noise Bandwidth Absolute Gravimeter Linear Model Parameter Phase Frequency Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faller J. E., J. Geophys. Res., 1965, 70, 4035–4038.CrossRefGoogle Scholar
  2. 2.
    Cook A., Metrologia, 1965, 1, 84–114.CrossRefGoogle Scholar
  3. 3.
    Murata I., Bulletin of the Earthquake Research Institute, 1978, 53, 49–130.Google Scholar
  4. 4.
    Gik L.D., Smirnov M.G., Geology and Geophysics,1978, 3, 112–122 (in Russian). Google Scholar
  5. 5.
    Palm William J., Modeling, Analysis, and Control of Dynamic Systems, 1983, New York: Wiley.Google Scholar
  6. 6.
    Nagornyi V.D., Metrologia, 1995, 32, 201–208.CrossRefGoogle Scholar
  7. 7.
    Aki K., Richards P., Quantitative Seismology - Theory and Methods, Vol. 1, 1980, San Francisco: Freeman.Google Scholar
  8. 8.
    Niebauer T.M., Metrologia, 1989, 26, 115–118.CrossRefGoogle Scholar
  9. 9.
    Draper N.R., Smith H., Applied Regression Analysis, 2nd Ed., 1981, New York: Wiley.Google Scholar
  10. 10.
    Sasagawa G., Klopping F., Niebauer T., Faller J., Hilt R., Geophys. Res. Lett, 1995, 22, 461–464.CrossRefGoogle Scholar
  11. 11.
    Hanada H., Bull. Geod., 1990, 64, 207–218.CrossRefGoogle Scholar
  12. 12.
    Klopping F.J, Peter G., Robertson D.S., Berstis K.A., Moose R.E., Carter W.E., J. Geophys. Res., 1991, 96, 8295–8303.CrossRefGoogle Scholar
  13. 13.
    Timmen L., Röder R.H., Schnell M., Bull. Geod., 1993, 67, 71–80.CrossRefGoogle Scholar
  14. 14.
    Nagornyi V.D., Data Processing in Absolute Gravimeter,Dissertation thesis, United Physics of the Earth Institute, Moscow, 1994 (in Russian). Google Scholar
  15. 15.
    Priestly M.B., Spectral Analysis and Time Series, Vol. 1, 1981, London: Academic Press.Google Scholar
  16. 16.
    Tsubokawa T., Metrologia, 1984, 20, 107–117.CrossRefGoogle Scholar
  17. 17.
    Nelson P.G., Rev. Sci. Instrum., 1991, 62, 2069–2075.CrossRefGoogle Scholar
  18. 18.
    Liard J., Gagnon C., Courtier N., Metrologia, 1995, 32, 153–157.CrossRefGoogle Scholar
  19. 19.
    Huffel Sabine van, Vandewalle Joos, The Total Least Squares Problem: Computational Aspects and Analysis, 1991, Philadelphia: SIAM.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • S. M. Svetlov
    • 1
    • 2
  1. 1.Division of Earth RotationNational Astronomical ObservatoryMizusawaJapan
  2. 2.Astrogeodynamics ObservatoryMizusawa, Iwate-Ken, 023Japan

Personalised recommendations