Skip to main content

Expression, Purification and Analyses of Cell-Cycle Regulatory Proteins in S. pombe

  • Chapter

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

The fission yeast Schizosaccharomyces pombe has long been recog-nized as one of the most useful model systems for investigating cell cycle regulation.1 S. pombe has been favored as an experimental organism largely because of the power of yeast genetics and molecular biology and because fission yeast has been repeatedly proven to serve as a useful paradigm for uncovering the key elements of cell control. Indeed, a large number of the critical components of cell cycle control, such as cdc2 kinase, Weel kinase and cdc25 phosphatase, were first discovered in fission yeast. Although major technical advances have recently made it possible to carry out significant functional in vivo analyses of cell cycle control proteins in more complex organisms such as the fruit fly and mice, fission yeast continues to serve as one of leading experimental systems for elucidating central features of eukaryotic cell cycle control.2

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayles J, Nurse P. Genetics of the fission yeast Schizosaccharomyces pombe. Annu Rev Genet 1992; 26: 373–402.

    Article  PubMed  CAS  Google Scholar 

  2. Nurse P. Universal control mechanism regulating onset of M-phase. Nature 1990; 344: 503–8.

    Google Scholar 

  3. Forsburg SL. Comparison of Schizosaccharomyces pombe expression systems. Nuc Acids Res 1993; 21: 2955–6.

    Article  CAS  Google Scholar 

  4. Nurse P, Bisset Y. Gene required in G1 for commitment to the cell cycle and G2 for control of mitosis in fission yeast. Nature 1981; 292: 558–6o.

    Article  PubMed  CAS  Google Scholar 

  5. Russell P, Nurse P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 1986; 45:145-53.

    Google Scholar 

  6. Gordon CB, Campbell JL. A cell cycle-responsive transcriptional control element and a negative control element in the gene encoding DNA polymerase a in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1991; 88: 6058–62.

    Article  PubMed  CAS  Google Scholar 

  7. Hiraoka Y, Toda T, Yanagida M. The NDA3 gene of fission yeast encodes 13-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. 1984; 39: 349–58.

    CAS  Google Scholar 

  8. Hirano T, Hiraoka Y, Yanagida M. A temperature-sensitive mutation of the Schizosaccharomyces pombe gene nuc2+ that encodes a nuclear scaffold-like protein blocks spindle elongation in mitotic anaphase. J Cell Biol 1988; 106: 1171–83.

    Article  PubMed  CAS  Google Scholar 

  9. Booher RN, Alfa CE, Hyams JS et al. The fission yeast cdc2/cdc13/ suce protein kinase: regulation of catalytic activity and nuclear localization. Cell 1989; 58:485-97.

    Google Scholar 

  10. lMoreno S, Hayles J, Nurse P. Regulation ofp34`dC2 protein kinase during mitosis. Cell 1989; 58: 361–72.

    Article  PubMed  CAS  Google Scholar 

  11. Field J, Nikawa J, Broek D et al. Purification of a RAS-responsive adenyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol Cell Biol 1988; 8:2159–65.

    Google Scholar 

  12. Hochuli E, Dobeli H, Schacher A. New metal chelate adsorbents selective for proteins and peptide containing neighboring histidine residues. J Chrom 1987; 411: 77–84.

    Google Scholar 

  13. Maundrell K. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 1993; 123: 127–30.

    Google Scholar 

  14. Grimm C, Kohli J, Murray J et al. Genetic engineering of Schizo-saccharomyces pombe: A system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol Gen Genet 1988; 215: 81–6.

    Article  PubMed  CAS  Google Scholar 

  15. Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Meth Enzymol 1991; 194: 795–823.

    Google Scholar 

  16. Shiozaki K, Russell P. Cell-cycle control linked to the extracellular environment by MAP kinase pathway in fission yeast. Nature 1995; 378: 739–43.

    Article  PubMed  CAS  Google Scholar 

  17. Degols G, Shiozaki K, Russell P. Activation and regulation of the Spci stress-activated protein kinase in Schizosaccharomyces pombe. Mol Cell Biol 1996; 26: 2870–77.

    Google Scholar 

  18. Shiozaki K, Russell P. Conjugation, meiosis, and the osmotic stress response are regulated by Spci kinase through Atfi transcription factor in fission yeast. Genes Dev 1996; 10: 2276–88.

    Article  PubMed  CAS  Google Scholar 

  19. Russell P, Nurse P. Negative regulation of mitosis by wee’’, a gene encoding a protein kinase homolog. Cell 1987; 49: 559–67.

    Google Scholar 

  20. Russell P, Nurse P. The mitotic inducer nimi functions in a regulatory network of protein kinase homologs controlling the initiation of mitosis. Cell 1987; 49: 569–76.

    Article  PubMed  CAS  Google Scholar 

  21. Wu L, Russell P. Nimi kinase promotes mitosis by inactivating Weei tyrosine kinase. Nature 1993; 363: 738–41.

    Article  PubMed  CAS  Google Scholar 

  22. Evan GI, Lewis GK, Ramsay G et al. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 1985; 5: 3610–6.

    PubMed  CAS  Google Scholar 

  23. Munro S, Pelham HRB. Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of Drosophila hsp7o. EMBO J 1984; 3:3087-93.

    Google Scholar 

  24. Apolinario E, Nocero M, Jin M et al. Cloning and manipulation of the Schizosaccaharomyces pombe his7` gene as a new selectable marker for molecular genetic studies. Curr Genet 1993; 24: 491–5.

    Google Scholar 

  25. Russell P. Gene Cloning and expression in fission yeast. In: Nasim A, Young P, Johnson BF, ed. Molecular Biology of the Fission Yeast.Cell Biology: A Series of Monographs. San Diego: Academic Press, 1989: 243–71.

    Chapter  Google Scholar 

  26. Maundrell K. nmti of fission yeast. J Biol Chem 1990; 265:10857–64.

    Google Scholar 

  27. Russell PR, Hall BD. Structure of the Schizosaccharomyces pombe cytochrome c gene. Mol Cell Biol 1982; 2: 106–16.

    PubMed  CAS  Google Scholar 

  28. Basi G, Schmid E, Maundrell K. TATA box mutations in the Schizosaccharomyces pombe nmti promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 1993; 123: 131–6.

    Google Scholar 

  29. Smith DB, Johnson KS. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 1988; 67: 31–40.

    Article  PubMed  CAS  Google Scholar 

  30. Guan K, Dixon JE. Eukaryotic proteins expressed in Escherichia coli: An improved thrombin cleavage and purification procedure of fusion proteins with Glutathione S-Transferase. Anal Biochem 1991; 192: 262–7.

    Article  PubMed  CAS  Google Scholar 

  31. Watt RA, Shatzman AR, Rosenberg M. Expression and characterization of the human c-myc DNA-binding protein. Mol Cell Biol 1985; 5:448-56.

    Google Scholar 

  32. Leatherwood J, Lopez-Girona A, Russell P. Interaction of Cdc2 and Cdc18 with a fission yeast ORC2-like protein. Nature 1996; 378.

    Google Scholar 

  33. Millar JBA, Russell P, Dixon JE et al. Negative regulation of mitosis by two functionally overlapping PTPases in fission yeast. EMBO J 1992; 11: 4943–52.

    PubMed  CAS  Google Scholar 

  34. Millar JBA, Buck V, Wilkinson MG. Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev 1995; 9: 2117–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shiozaki, K., Russell, P. (1997). Expression, Purification and Analyses of Cell-Cycle Regulatory Proteins in S. pombe . In: Giga-Hama, Y., Kumagai, H. (eds) Foreign Gene Expression in Fission Yeast: Schizosaccharomyces pombe . Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03472-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03472-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03474-3

  • Online ISBN: 978-3-662-03472-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics