Skip to main content

Summary

Evolutionary Algorithms provide a general approach to inverse problem solving: As optimization methods, they only require the computation of values of the function to optimize. Thus, the only prerequisite to efficiently handle inverse problems is a good numerical model of the direct problem, and a representation for potential solutions.

The identification of mechanical inclusion, even in the linear elasticity framework, is a difficult problem, theoretically ill-posed: Evolutionary Algorithms are in that context a good tentative choice for a robust numerical method, as standard deterministic algorithms have proven inaccurate and unstable. However, great attention must be given to the implementation. The representation, which determines the search space, is critical for a successful application of Evolutionary Algorithms to any problem. Two original representations are presented for the inclusion identification problem, together with the associated evolution operators (crossover and mutation). Both provide outstanding results on simple instances of the identifica tion problem, including experimental robustness in presence of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-D. Boissonnat and M. Yvinec. Géométrie algorithmique. Ediscience Interna tional, 1995.

    Google Scholar 

  2. R. Cerf. An asymptotic theory of genetic algorithms. In J.-M. Affiot, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial Evolution, volume 1063 of LNCS. Springer Verlag, 1996.

    Google Scholar 

  3. C. D. Chapman, K. Saitou, and M. J. Jakiela. Genetic algorithms as an approach to configuration and topology design. Journal of Mechanical Design, 116:1005–1012, 1994.

    Article  Google Scholar 

  4. P. G. Ciarlet. Mathematical Elasticity, Vol I : Three-Dimensional Elasticity. North-Holland, Amsterdam, 1978.

    Google Scholar 

  5. P. G. Ciarlet. The Finite Element Method f or Elliptic Problems. North-Holland, Amsterdam, 1988.

    Google Scholar 

  6. A. Constantinescu. Sur l’identification des modules élastiques. PhD thesis, Ecole Polytechnique, June 1994.

    Google Scholar 

  7. J. Dejonghe. Allègement de platines métalliques par algorithmes génétiques. Rapport de stage d’option B2 de l’Ecole Polytechnique. Palaiseau, Juin 1993.

    Google Scholar 

  8. D. B. Fogel. Phenotypes, genotypes and operators in evolutionary computation. In D. B. Fogel, editor, Proceedings of the Second IEEE International Conference on Evolutionary Computation. IEEE, 1995.

    Google Scholar 

  9. P.L. George. Automatic mesh generation, application to Finite Element Methods. Wiley & Sons, 1991.

    MATH  Google Scholar 

  10. C. Ghaddar, Y. Maday, and A. T. Patera. Analysis of a part design procedure. Submitted to Nümerishe Mathematik, 1995.

    Google Scholar 

  11. E. Jensen. Topological Structural Design using Genetic Algorithms. PhD thesis, Purdue University, November 1992.

    Google Scholar 

  12. T. Jones and S. Forrest. Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In L. J. Eshelman, editor, Proceedings of the 6 th International Conference on Genetic Algorithms, pages 184–192. Morgan Kaufmann, 1995.

    Google Scholar 

  13. F. Jouve. Modélisation mathématique de l’œeil en élasticité non-linéaire, volume RMA 26. Masson Paris, 1993.

    Google Scholar 

  14. K. E. Kinnear Jr. A perspective on gp. In K. E. Kinnear Jr, editor, Advances in Genetic Prouraming. pages 3–19. MIT Press Camhridge M A 1994

    Google Scholar 

  15. A. B. Kahng and B. R. Moon. Toward more powerful recombinations. In L. J. Eshelman, editor, Proceedings of the 6 th International Conference on Genetic Algorithms, pages 96–103. Morgan Kaufmann, 1995.

    Google Scholar 

  16. L. Kallel and M. Schoenauer. Fitness distance correlation for variable length representations. In preparation, 1996.

    Google Scholar 

  17. C. Kane. Algorithmes génétiques et Optimisation topologique. PhD thesis, Université de Paris VI, July 1996.

    Google Scholar 

  18. C. Kane and M. Schoenauer. Genetic operators for two-dimensional shape optimization. In J.-M. Alliot, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial Evolution, LNCS 1063. Springer-Verlag. Septembre 1995.

    Google Scholar 

  19. R. V. Kohn and A. McKenney. Numerical implementation of a variational method for electric impedance tomography. Inverse Problems, 6:389–414. 1990.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. P. Preparata and M. I. Shamos. Computational Geometry: an introduction. Springer-Verlag, 1985.

    Book  Google Scholar 

  21. N. J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Systems, 5:183–20, 1991.

    MathSciNet  MATH  Google Scholar 

  22. N. J. Radcliffe and P. D. Surry. Fitness variance of formae and performance prediction. In D. Whitley and M. Vose, editors, Foundations of Genetic Algorithms 3, pages 51–72. Morgan Kaufmann, 1994.

    Google Scholar 

  23. M. Schoenauer. Representations for evolutionary optimization and identification in structural mechanics. In J. Périaux and G. Winter, editors, Genetic Algorithms in Engineering and Computer Sciences, 443–464. John Wiley, 1995.

    Google Scholar 

  24. M. Schoenauer. Shape representations and evolution schemes. In L. J. Fogel, P. J. Angeline, and T. Bäck, editors, Proceedings of the 5 th Annual Conference on Evolutionary Programming. MIT Press, 1996.

    Google Scholar 

  25. H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, New-York, 1981. 1995 – 2nd edition.

    MATH  Google Scholar 

  26. M. Seguin. Optimisation de formes par évolution artificielle. etude de deux représentations, Dec. 1995. Rapport de DEA d’Analyse Numérique de l’Université de Paris VI.

    Google Scholar 

  27. D. Thierens and D.E. Goldberg. Mixing in genetic algorithms. In S. Forrest, editor, Proceedings of the 5 th International Conference on Genetic Algorithms, pages 38–55. Morgan Kaufmann, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schoenauer, M., Jouve, F., Kallel, L. (1997). Identification of Mechanical Inclusions. In: Dasgupta, D., Michalewicz, Z. (eds) Evolutionary Algorithms in Engineering Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03423-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03423-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08282-5

  • Online ISBN: 978-3-662-03423-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics