Skip to main content

Physical Design of VLSI Circuits and the Application of Genetic Algorithms

  • Chapter
Evolutionary Algorithms in Engineering Applications

Summary

The task of VLSI physical design is to produce the layout of an integrated circuit. New performance requirements are becoming increasingly dominant in today’s sub-micron regimes requiring new physical design algorithms. Genetic algorithms have been increasingly successful when applied in VLSI physical design in the last 10 years. Genetic algorithms for VLSI physical design are reviewed in general. In addition, a specific parallel genetic algorithm is presented for the routing problem in VLSI circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Acan and Z. Unver, “Switchbox Routing by Simulated Annealing: SAR,” in Proc. IEEE International Symposium on Circuits and Systems, vol. 4, pp. 1985–1988, 1992.

    Google Scholar 

  2. P. Adamidis, Review of Parallel Genetic Algorithms, Technical Report, Aristotle University of Thessaloniki, 199

    Google Scholar 

  3. H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Reading, MA: Addison-Wesley, 1990.

    Google Scholar 

  4. T. N. Bui and B. R. Moon, “A Fast and Stable Hybrid Genetic Algorithm for the Ratio-Cut Partitioning Problem on Hypergraphs”, Proc. of the ACM-IEEE Design Automation Conference, pp. 664–669. 1994.

    Google Scholar 

  5. H. Chan, P. Mazumder and K. Shahookar, “Macro-Cell and Module Placement by Genetic Adaptive Search with Bitmap-Represented Chromosome,” Integration, The VLSI Journal, vol. 12, no. 1, pp. 49–77, Nov. 1991.

    Article  Google Scholar 

  6. J. P. Cohoon and W. D. Paris, “Genetic Placement,” IEEE Trans. on ComputerAided Design, vol. 6, no. 6, pp. 956–964, Nov. 1987.

    Article  Google Scholar 

  7. J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. S. Richards, “Punctuated Equilibria: A Parallel Genetic Algorithm,” Proc. Second International Conference on Genetic Algorithms, pp. 148–154. 1987.

    Google Scholar 

  8. J. P. Cohoon and P. L. Heck, “BEAVER: A Computational-Geometry-Based Tool for Switchbox Routing,” IEEE Trans. on Computer-Aided Design, vol. 7, no. 6, pp. 684–697, 1988.

    Article  Google Scholar 

  9. J. P. Cohoon, W. N. Martin, and D. S. Richards, “Genetic Algorithms and Punctuated Equilibria in VLSI,” Parallel Problem Solving from Nature, H. P. Schwefel and R. Männer, eds., Lecture Notes in Computer Science, vol. 496, Berlin: Springer Verlag, pp. 134–144, 1991.

    Chapter  Google Scholar 

  10. N. Eldredge and S. J. Gould, “Punctuated Equilibria: An Alternative to Phyletic Gradualism,” Models of Paleobiology, T. J. M. Schopf, ed., San Francisco, CA: Freeman. Cooper and Co., pp. 82–115, 1972.

    Google Scholar 

  11. H. Esbensen, “A Genetic Algorithm for Macro Cell Placement,” Proc. of the European Design Automation Conference, pp. 52–57, Sept. 1992.

    Google Scholar 

  12. H. Esbensen and P. Mazumder, “SAGA: A Unification of the Genetic Algorithm with Simulated Annealing and its Application to Macro-Cell Placement,” Proc. of the 7th International Conference on VLSI Design, pp. 211–214, Jan. 1994.

    Google Scholar 

  13. H. Esbensen, “A Macro-Cell Global Router Based on Two Genetic Algorithms” Proc. of the European Design Automation Conference, pp. 428–433, Sept. 1994.

    Google Scholar 

  14. M. P. Fourman, “Compaction of Symbolic Layout using Genetic Algorithms,” Proc. of the First International Conference on Genetic Algorithms, pp. 141–153, 1985.

    Google Scholar 

  15. M. Geraci, P. Orlando, F. Sorbello and G. Vasallo, “A Genetic Algorithm for the Routing of VLSI Circuits,” Euro Asic ‘91, Parigi 27–31 Maggio, Los Alamitos, CA: IEEE Computer Society Press, pp. 218–223, 1991.

    Google Scholar 

  16. S. H. Gerez and O. E. Herrmann, “Switchbox Routing by Stepwise Reshaping,“ IEEE Trans. on Computer-Aided Design, vol. 8, no. 12, pp. 1350–1361, 1989.

    Article  Google Scholar 

  17. N. Göckel, G. Pudelko, R. Drechsler, B. Becker, “A Hybrid Genetic Algorithm for the Channel Routing Problem,” Proceedings of the 1996 IEEE International Sumposium on Circuits and Systems, ISCAS-96, pp. 675–678, 1996.

    Google Scholar 

  18. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley, 1989.

    MATH  Google Scholar 

  19. J. J. Grefenstette and N. N. Schraudolph, A User’s Guide to GENESIS 1.2 UCSC, CSE Dept., University of California, San Diego, 1987.

    Google Scholar 

  20. Homepage: “http://www.cs.virginia.edu/’ mentat/”.

  21. M. Hulin, “Analysis of Schema Distributions,” Proc. of the Fourth International Conference on Genetic Algorithms, pp. 204–209, 1991.

    Google Scholar 

  22. M. Hulin, “Circuit Partitioning with Genetic Algorithms Using a Coding Scheme to Preserve the Structure of a Circuit,” Parallel Problem Solving from Nature, H. P. Schwefel and R. Männer, eds., Lecture Notes in Computer Science, vol. 496, Berlin: Springer Verlag, pp. 75–79, 1991.

    Chapter  Google Scholar 

  23. R. Joobbani, An Artificial Intelligence Approach to VLSI Routing, Boston, MA: Kluwer Academic Publishers, 1986.

    Google Scholar 

  24. R. M. Kling and P. Banerjee, “ESP: Placement by Simulated Evolution,” IEEE Trans. on Computer-Aided Design, vol. 8, no. 3, pp. 245–256, March 1989.

    Article  Google Scholar 

  25. R. M. Kling and P. Banerjee, “Optimization by Simulated Evolution with Applications to Standard Cell Placement,” Proc. of the 27th ACM-IEEE Design Automation Conference, pp. 20–25, 1990.

    Google Scholar 

  26. B. Kröger, Parallel Genetic Algorithms for Solving the Two-Dimensional Bin Packing Problem (in German), Ph.D. Thesis, University of Osnabrück, 1993.

    Google Scholar 

  27. C. Y. Lee, “An Algorithm for Path Connections and its Applications,” IRETrans. on Electronic Computers, pp. 346–365, 1961.

    Google Scholar 

  28. J. Lienig, “A Parallel Genetic Algorithm for Two Detailed Routing Problems”, Proceedings of the 1996 IEEE International Symposium on Circuits and Systems, ISCAS-96, pp. 508–511, 1996.

    Google Scholar 

  29. J. Lienig, “Channel and Switchbox Routing with Minimized Crosstalk — A Parallel Genetic Approach”, Proceedings of the 10th International Conference on VLSI Desian. pp.27–31. Jan. 1997.

    Google Scholar 

  30. J. Lienig and K. Thulasiraman, “A Genetic Algorithm for Channel Routing in VLSI Circuits,” Evolutionary Computation, vol. 1, no. 4. pp. 293–311. 1994.

    Article  Google Scholar 

  31. J. Lienig and K. Thulasiraman, “GASBOR: A Genetic Algorithm for Switchbox Routing in Integrated Circuits,” Progress in Evolutionary Computation, X. Yao, ed., Lecture Notes in Artificial Intelligence, vol. 956, Berlin: Springer Verlag, pp. 187–200, 1995.

    Chapter  Google Scholar 

  32. Y.-L. Lin, Y.-C. Hsu and F.-S. Tsai, “SILK: A Simulated Evolution Router,” IEEE Trans. on Computer-Aided Design, vol. 8, no. 10, pp. 1108–1114, Oct. 1989.

    Article  Google Scholar 

  33. S. Mohan and P. Mazumder, “Wolverines: Standard Cell Placement on a Network of Workstations,” IEEE Trans. on Computer-Aided Design, vol. 12, no. 9, pp. 1312–1326, Sept. 1993.

    Article  Google Scholar 

  34. B. T. Preas, “Benchmarks for Cell-based Layout Systems,” Proc. of the ACMIEEE Design Automation Conference. pp. 319–320. 1987.

    Google Scholar 

  35. Proc. of the ACM-IEEE Design Automation Conference. 1984.

    Google Scholar 

  36. Proc. of the ACM-IEEE Design Automation Conference, 1987.

    Google Scholar 

  37. Y. Saab and V. Rao, “An Evolution-Based Approach to Partitioning ASIC Systems,” Proc. of the ACM-IEEE Design Automation Conference, pp. 767–770, 1989.

    Google Scholar 

  38. C. Sechen, VLSI Placement and Global Routing Using Simulated Annealing, Boston, MA: Kluwer Academic Publishers. 1988.

    Book  Google Scholar 

  39. K. Shahookar and P. Mazumder, “GASP — A Genetic Algorithm for Standard Cell Placement,” Proc. of the European Design Automation Conference, pp. 660–664, 1990.

    Google Scholar 

  40. K. Shahookar and P. Mazumder, “A Genetic Approach to Standard Cell Placement using Meta-Genetic Parameter Optimization”, IEEE Trans. on ComputerAided Design, vol. 9, no. 5, pp. 500–511. May 1990.

    Article  Google Scholar 

  41. K. Shahookar, W. Khamisani, P. Mazumder and S. M. Reddy, “Genetic Beam Search for Gate Matrix Layout,” Proc. of the 6th International Conference on VLSI Design, pp. 208–213, Jan. 1993.

    Google Scholar 

  42. J. M. Varanelli and J. P. Cohoon, “Population-Oriented Simulated Annealing: A Genetic/Thermodynamic Hybrid Approach to Optimization,” Proc. of the Sixth International Conference on Genetic Algorithms, pp. 174–181, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lienig, J. (1997). Physical Design of VLSI Circuits and the Application of Genetic Algorithms. In: Dasgupta, D., Michalewicz, Z. (eds) Evolutionary Algorithms in Engineering Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03423-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03423-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08282-5

  • Online ISBN: 978-3-662-03423-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics