Skip to main content

Quantum N-Body Hamiltonians

  • Chapter
  • 463 Accesses

Part of the Texts and Monographs in Physics book series (TMP)

Abstract

A system of N non-relativistic distinguishable particles moving in the Euclidean space ℝv is described by the Hilbert space L 2(ℝNv). Its evolution is usually described by a Hamiltonian of the form

$$H: = \sum\limits_{j = 1}^N {\frac{1}{{2{m_j}}}} D_j^2 + \sum\limits_{1 \leqslant i \leqslant j \leqslant N} {{V_{ij}}} ({x_i} - {x_j})$$
(6.0.1)

Keywords

  • Wave Operator
  • Partial Isometry
  • Asymptotic Completeness
  • Joint Spectrum
  • Asymptotic Velocity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-03403-3_7
  • Chapter length: 87 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-03403-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dereziński, J., Gérard, C. (1997). Quantum N-Body Hamiltonians. In: Scattering Theory of Classical and Quantum N-Particle Systems. Texts and Monographs in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03403-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03403-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08284-9

  • Online ISBN: 978-3-662-03403-3

  • eBook Packages: Springer Book Archive