Advertisement

Entire and Meromorphic Functions

Chapter
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 85)

Abstract

The works by Weierstrass, Mittag-Leffler and Picard dated back to the seventies of the last century marked the beginning of systematic studies of the theory of entire and meromorphicl functions. The theorems by Weierstrass and Mittag-Leffler gave a general description of the structure of entire and meromorphic functions. The representation of entire functions as an infinite product by Weierstrass served as the basis for studying properties of entire and meromorphic functions. The Picard theorem initiated the theory of value distribution of meromorphic functions. In 1899 Jensen proved a formula which relates the number of zeros of an entire function in a disk with the magnitude of its modulus on the circle. The Jensen formula was of a great importance for the development of the theory of entire and meromorphic functions.

Keywords

Entire Function Meromorphic Function Interpolation Problem Finite Order Subharmonic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, N. (1881): Sur les fonctions génératrices et leurs déterminantes. Oeuvres, Kristiania 2, 77–89, Jbuch 13, 20Google Scholar
  2. Agranovich, P.Z., Logvinenko, V.N. (1985): An analog of the Titchmarsh-Valiron theorem on the two-term asymptotics of a subharmonic function with masses on a finite system of rays. Sib.Mat. Zh. 26, No.5, 3–19, Zbl. 578.31002. Engl. transl.: Sib. Math. J. 26, 629–642 (1985)MathSciNetzbMATHGoogle Scholar
  3. Agranovich, P.Z., Logvinenko, V.N. (1987): On Massivity of Exceptional Set of Multi-Term Asymptotic Representation of a Subharmonic Function. Kharkov, FTINT Akad. Nauk Ukr.SSR, Preprint 45–87, 18 pp. (Russian)Google Scholar
  4. Ahlfors, L. (1937): Über die Anwendung differential-geometrischer Methoden zur Untersuchung von Uberlagerungsfiächen. Acta Soc. Sci. Fenn., Ser. A. 2, No.6, 1–17, Zbl. 17, 36Google Scholar
  5. Ahlfors, L. (1941): The theory of meromorphic curves. Acta Soc. Sci. Fenn., Ser. A. 3, No.4, 1–31, Zbl. 61, 152Google Scholar
  6. Akhiezer, N.I. (1927): A new proof of necessary conditions of belonging of an integer-order entire function to a certain type. Zap. Fiz.-Mat. Otd. Akad.Nauk SSSR 2, No.3, 29–33 ( Ukrainian ), Jbuch 53, 296Google Scholar
  7. Akhiezer, N.I., Levin, B.Ya. (1952): On interpolation of entire transcendental functions of finite order. Zap. Mat. Otd. Fiz.-Mat. Fak. i Kharkov Mat. O-va 23, 5–26 (Russian)Google Scholar
  8. Anderson, J.M., Baernstein, A. (1978): The size of the set on which meromorphic function is large. Proc. Lond. Math. Soc., III. Ser. 36, 518–539, Zbl. 381. 30014Google Scholar
  9. Anderson, J.M.,, Clunie, J. (1966): Slowly growing meromorphic functions. Comment Math. Helv. 40, No.4, 267–280, Zbl. 143, 98Google Scholar
  10. Anderson, J.M.,, Clunie, J. (1969): Entire functions of finite order and lines of Julia. Math. Z. 112, No.1, 59–73, Zbl. 216, 101Google Scholar
  11. Anosov D.V., Aranson C.X., Bronshtein I.U., Grines V.Z. (1985): Smooth dynamical systems. Itogi Nauki Tech., Ser. Sovrem. Probl. Mat., Fundam. Napravlenia 1, 151–242. Engl. transi.: Encycl. Math. Sci. 1, Berlin Heidelberg New York, Springer-Verlag, 149–233 (1988), Zbl. 605. 58001Google Scholar
  12. Arakelyan, N.U. (1966a): Constructing entire functions of finite order uniformly decreasing in an angle. Izv. Akad. Nauk Arm.SSR, Mat. 1, No.3, 162–191 ( Russian ), Zbl. 177, 104Google Scholar
  13. Arakelyan, N.U. (1966b): Entire functions of finite order with an infinite number of deficient values. Dokl. Akad. Nauk SSSR 170, No.2, 999–1002, Zbl. 153, 396. Engl. transi.: Soy. Math., Dokl. 7, 1303–1306 (1966)zbMATHGoogle Scholar
  14. Arakelyan, N.U. A(1968): On the Nevanlinna problem. Mat. Zametki 3, No.3, 357–360, Zbl. 169, 405. Engl. transi.: Math. Notes 3, 225–227 (1968)zbMATHGoogle Scholar
  15. Arakelyan, N.U. (1970): Entire and analytic functions of bounded growth with an infinite number of deficient values. Izv. Akad. Nauk Arm.SSR, Mat. 5, No.6, 486–506 ( Russian ), Zbl. 219. 30017Google Scholar
  16. Arnold, V.I., Ilyashenko, Yu.S. (1985): Ordinary Differential Equations. Itogi Nauki Tech., Ser. Sovrem. Probl. Mat., Fundam. Napravlenia 1, 7–149. Engl. transi.: Encycl. Math. Sci. 1, Berlin Heidelberg New York, Springer-Verlag, 1–147 (1988), Zbl. 602. 58020Google Scholar
  17. Avdonin, S.A. (1974): To the problem of Riesz bases of exponential functions in L2. Vestn. Leningr. Univ., No. 13 (Mat. Mekh. Astron. No.3), 5–12 ( Russian ), Zbl. 296. 46033Google Scholar
  18. Azarin, V.S. (1966): On some characteristic property of functions of completely regular growth inside an angle. Teor. Funkts., Funkts. Anal. Prilozh. 2, 55–66 ( Russian ), Zbl. 241. 30033Google Scholar
  19. Azarin, V.S. (1969): On rays of completely regular growth of an entire function. Mat. Sb., Nov. Ser. 79, No.4, 463–476, Zbl. 194, 107. Engl. transi.: Math. USSR, Sb. 8, 437–450 (1969)Google Scholar
  20. Azarin, V.S. (1972a): On regularity of the growth of functionals on entire functions. Teor. Funkts., Funkts. Anal. Prilozh. 16, 109–137 ( Russian ), Zbl. 265. 30030Google Scholar
  21. Azarin, V.S. A(1972b): An example of an entire function with a given indicator and lower indicator. Mat. Sb., Nov. Ser. 89, No.4, 541–557, Zbl. 249.30023. Engl. transi.: Math. USSR, Sb. 18 (1972), 541–558 (1974)zbMATHGoogle Scholar
  22. Azarin, V.S. (1977): On regularity of the growth of Fourier coefficients of the logarithm of the modulus of entire function. Teor. Funkts., Funkts. Anal. Prilozh. 27, 9–22 ( Russian ), Zbl. 435. 30026Google Scholar
  23. Azarin, V.S. (1979): On asymptotic behavior of subharmonic functions of finite order. Mat. Sb., Nov. Ser. 108, No.2, 147–167 (Russian), Zbl. 398.31004. Engl. transi.: Math. USSR, Sb. 36, 135–154 (1980)zbMATHGoogle Scholar
  24. Azarin, V.S., Eremenko A.E., Grishin A.F. (1984): Cluster sets and a problem of A.F.Leont’ev. Lecture Notes in Math. 1043, 617–618, Zbl. 545. 30038 (entire collection)Google Scholar
  25. Azarin, V.S., Giner, V.B. (1982): On a structure of limit sets of entire and subharmonic func- tions. Teor. Funkts., Funkts. Anal. Prilozh. 38, 3–12 ( Russian ), Zbl. 517. 30026Google Scholar
  26. Azarin, V.S., Giner, V.B. (1988): A criterion of existence of entire function with a given limit set. Dopovidi Akad. Nauk UkrSSR, Ser. A, No. 5, 3–5 (Russian), Zbl. 647.30019,- (1989): On completeness of exponential systems in convex domains. Dokl. Akad. Nauk SSSR 305, No.1, 11–14, Zbl. 722.30004. Engl. transl. Sov. Math., Dokl. 39, No. 2, 225–228MathSciNetGoogle Scholar
  27. Azarin, V.S., Giner, V.B. (1990): On multipliers of entire function of finite order. Dokl. Akad. Nauk SSSR 314, No.5, 1033–1036, Zbl. 741.30022. Engl. transl.: Soy. Math., Dokl. 42, No. 2, 555–558 (1991)MathSciNetGoogle Scholar
  28. Azarin, V.S., Giner, V.B. (1992): Limit sets and multiplicators of entire function. Adv. Soy. Math., 11, 251–275, Zbl. 771. 30033Google Scholar
  29. Azarin, V.S., Giner, V.B. (1994): Limit sets of entire functions and completeness of exponential systems. Mat. Fiz., Anal, Geom. 1, 3–30 (Russian)MathSciNetGoogle Scholar
  30. Azarin, V.S., Giner, V.B., Lyubich M.Yu. (1992): Limit sets of entire functions and dynamical systems. Dynamical Systems and Complex Analysis. Kiev, Naukova Dumka, 3–17 ( Russian ), Zbl. 789. 30017Google Scholar
  31. Azarin, V.S., Giner, V.B., Podoshev, L.R. (1984): Limit sets and indicators of entire function. Sib. Mat. Zh. 25, No.6(148), 3–16, Zbl. 568.30023. Engl. transi.: Sib. Math. J. 25, 833–844 (1984)zbMATHGoogle Scholar
  32. Azarin, V.S., Ronkin, A.L. (1985): On some Schiffman inequality for meromorphic maps onto the projective plane. Teor. Funkts., Funkts. Anal. Prilozh. 44, 3–16, Zbl. 584.32005. Engl. transi.: J. Sov. Math. 48, No. 3, 241–253 (1990)MathSciNetzbMATHGoogle Scholar
  33. Babenko, K.I. (1960): On some classes of spaces of infinitely differentiable functions. Dokl. Akad. Nauk SSSR 132, No.6, 1231–1234, Zbl. 123, 306. Engl. transi.: Sov. Math., Dokl. 1, 738–741 (1960)Google Scholar
  34. Badalyan, A.M. (1969): On representing a class of functions meromorphic in the whole plane. Izv. Akad. Nauk Arm.SSR, Mat. 4, No.6, 468–490 ( Russian ), Zbl. 194, 109Google Scholar
  35. Baernstein, A. (1973): Proof of Edrei’s spread conjecture. Proc. Lond. Math. Soc., III Ser. 26, 418–434, Zbl. 263. 30024Google Scholar
  36. Balashov, S.K. (1973): On entire functions of finite order on curves with regular rotation. Izv. Akad. Nauk SSSR, Ser. Mat. 37, 603–629, Zbl. 272.30030. Engl. transl.: Math. USSR, Izv. 7 (1973), 601–627 (1974)zbMATHGoogle Scholar
  37. Balashov, S.K., (1976): same title, Izv. Akad. Nauk SSSR, S.r. Mat. 40, 338–354 (Russian), Zbl. 335.30020. Engl. transl.: Math. USSR, Izv. 10 (1976), 321–338 (1977)zbMATHGoogle Scholar
  38. Bank, S. (1975): Some results on analytic and meromorphic solutions of algebraic differential equations. Adv. Math. 15, No.1, 41–62, Zbl. 296. 34005Google Scholar
  39. Bank, S., Frank, G., Laine, I. (1983): Uber die Nullstellen von Lösungen linearer Differetialgleichungen. Math. Z. 183, 355–364, Zbl. 506. 34005Google Scholar
  40. Bank, S., Kaufman, R. (1986): On the gamma function and the Nevanlinna characteristic. Analysis 6, No.2–3, 115–133, Zbl. 594. 30032Google Scholar
  41. Bank, S., Laine, I. (1981): Meromorphic solutions of the Riccati differential equation. Ann. Acad. Sci. Fenn., Ser. AI 6, 369–398, Zbl. 493. 34007Google Scholar
  42. Bank, S., Laine, I. (1982): On the oscillation of f“ + Af = 0, where A is entire. Trans. Am. Math. Soc. 273, No.1, 351–363, Zbl. 505. 34026Google Scholar
  43. Barsegyan, G.A. (1977): Deficient values and structure of covering surfaces. Izv. Akad. Nauk Arm.SSR, Mat. 12, No.1, 46–53 ( Russian ), Zbl. 352. 30017Google Scholar
  44. Barsegyan, G.A. (1981): On the geometry of meromorphic functions. Mat. Sb., Nov. Ser. 114, No.2, 179–225, Zbl. 457.30027. Engl. transi.: Math. USSR, Sb. 42, 155–196 (1982)zbMATHGoogle Scholar
  45. Barsegyan, G.A. (1985): A property of closeness of a-points of meromorphic functions, and a structure of schlicht domains of Riemann surfaces I,II. Izv. Akad. Nauk Arm.SSR, Mat. 20, No.5, 375–400; No.6, 407–425, I Zbl. 602.30037. Engl. transl.: Sov. J. Contemp. Math. Anal., Arm. Acad. Sci. 20, No. 5, 50–76 (1985); II Zbl. 602.30038. Engl. transi.: Soy. J. Contemp. Math. Anal., Arm. Acad. Sci. 20, No. 6, 1–19 (1985)MathSciNetzbMATHGoogle Scholar
  46. Barth, K.F., Brannan, D. A., Hayman, W.K. (1978): The growth of plane harmonic functions along an asymptotic path. Proc. Lond. Math. Soc. 37, No.2, 363–384, Zbl. 408. 30033Google Scholar
  47. Bendixson, I. (1887): Sur une extension à l’infini de la formule d’interpolation de Gauss. Acta Math. 9, 1–34MathSciNetGoogle Scholar
  48. Berenstein, C.A., Taylor, B.A. (1979): A new look at interpolation theory for entireGoogle Scholar
  49. functions of one variable. Adv. Math. 33, No.2, 109–143, Zbl. 432. 30028 Beiadtason, B. (1978): A note on Pavlov-Korevaar-Dixon--iRte€golation. Proc. Kon.Google Scholar
  50. Nederland Acad. Wetensch. Ser. A. 81, No.4, 409–411, Zbl. 421. 30028Google Scholar
  51. Bernstein, S.N. (1948): Extension of trigonometric polynomial properties onto entire functions of finite degree. Izv. Akad. Nauk SSSR, Ser. Mat. 12, No.5, 421–444 ( Russian ), Zbl. 34, 193Google Scholar
  52. Bernstein, S.N. (1950): On some properties of cyclically monotonic functions. Izv. Akad. Nauk SSSR, Ser. Mat. 14, No.5, 381–404 ( Russian ), Zbl. 39, 69Google Scholar
  53. Bernstein, V. (1933): Sulla creszenca della transcendenti intere d’ordine finito. Reale Accademia d’Italia Memorie della Classe di Scionze Fis. Mat. Natur. 4, 339–401, Zbl. 8, 264Google Scholar
  54. Bertrand, O. (1978,1979): Travaux récents sur points singuliers des équations différentielles linéaires. Sémin. Bourbaki No.538, 1–16 (=Lect. Notes Math. 770, 228–243 (1980)), Zbl. 445. 12012Google Scholar
  55. Beurling, A. (1949): Some theorems on boundedness of analytic functions. Duke Math. J. 16, 355–359, Zbl. 33, 365Google Scholar
  56. Beurling, A., Malliavin, P. (1962): On Fourier transforms of measures with compact supports. Acta Math. 107, No.3–4, 291–303, Zbl. 127, 326Google Scholar
  57. Beurling, A., Malliavin, P. (1967): On the closure of characters and zeros of entire functions. Acta Math. 118, No.1–2, 79–93, Zbl. 171, 119Google Scholar
  58. Blumenthal, O. (1907): Sur le mode de croissance des fonctions entères. Bull. Soc. Math. France 35, 213–232, Jbuch 38, 444Google Scholar
  59. Blumenthal, O. (1910): Principes de la théorie des fonctions entières d’ordre infini. Paris, Gauthier-Villars, 150 pp., Jbuch 41, 462Google Scholar
  60. Boas, R.P. (1943): Representation of functions by Lidstone series. Duke Math. J. 10, No.2, 239–245, Zbl. 61, 115Google Scholar
  61. Boas, R.P. (1954): Entire Functions. N.Y., Acad. Press, 276 pp., Zbl. 58, 302Google Scholar
  62. Boas, R.P., Schaeffer, A.C. (1949): A theorem of Cartwright. Duke Math. J. 9, 879–883, Zbl. 60, 222Google Scholar
  63. Bojchuk, V.S. (1986): On some class of entire functions. Ukr. Mat. Zh. 38, No.6, 683–688, Zbl. 617.30036. Engl. transl.: Ukr. Math. J. 38, 571–575 (1986)Google Scholar
  64. Bojchuk, V.S., Gol’dberg, A.A. (1974): To the theorem on three lines. Mat. Zametki 15, No.1, 45–53, Zbl. 289.30033. Engl. transl.: Math. Notes 15, 26–30 (1974)Google Scholar
  65. Borel, E. (1897a): Sur l’interpolation. C. R. Acad. Sci. 124, 673–676, Jbuch 28, 225Google Scholar
  66. Borel, E. (1897b): Sur les zéros des fonctions entières. Acta Math. 20, 357–396, Jbuch 28, 360Google Scholar
  67. Borel, E. (1898): Sur la recherche des singularités d’une fonction definie par un developpement de Taylor. C. R. Acad. Sci. 127, 1001–1003, Jbuch 29, 357Google Scholar
  68. Borel, E. (1899): Memoire sur les séries divergentes. Ann. Ecole Norm. Super. 16, 9–131, Jbuch 30, 230Google Scholar
  69. Borel, E. (1922): Methodes et problems de théorie de fonctions. Paris, Gauthier-Villars, 148 pp., Jbuch 48, 315Google Scholar
  70. Boutroux, P. (1913,1914): Recherches sur les transcendentes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre. Ann. Sci. Ec. Norm. Supér. 30, No.3, 255–375; 31, 99–159, Jbuch 44, 382; 45, 478Google Scholar
  71. Bratishchev, A.V. (1976): An interpolation problem in some classes of entire functions. Sib. Mat. Zh. 17, No.1, 30–43, Zbl. 327.30033. Engl. transl.: Sib. Math. J. 17, 23–33 (1976)Google Scholar
  72. Bratishchev, A.V. (1984): One type of estimates from below for entire functions of finite order and some applications. Izv. Akad. Nauk SSSR, Ser. Mat. 48, No.3, 451–475, Zbl. 551.30026. Engl. transl.: Math. USSR, Izv. 24, 415–438 (1985)zbMATHGoogle Scholar
  73. Bratishchev, A.V., Korobejnik, Yu.F. (1976): A multiple interpolation problem in a space of entire functions of a given proximate order. Izv. Akad. Nauk SSSR, Ser. Mat. 40, No.5, 1102–1127, Zbl. 343.30026. Engl. transl.: Sib. Math. J. 10, 1049–1074 (1978)zbMATHGoogle Scholar
  74. Bratishchev, A.V., Korobejnik, Yu.F. (1978): On some growth characteristics for subharmonic functions. Mat. Sb., Nov. Ser. 106, No.1, 44–65, Zbl. 381.31001. Engl. transl.: Math. USSR, Sb. 34, 603–626 (1978)zbMATHGoogle Scholar
  75. Buck, R.C. (1948): Integral valued entire functions. Duke Math. J. 15, 879–891, Zbl. 33, 364Google Scholar
  76. Chistyakov, G.P. (1987): On factorization of probability distributions of Linnik’s class L, I, II. Teor. Funkts., Funkts. Anal. Prilozh. 47, 3–25, Zbl. 636.60012. Engl. transi.: J. Sov. Math. 48, No.6, 619–635 (1990); 48, 3–26, Zbl. 636.60013. Engl. transi.: J. Sov. Math. 49, No. 2, 857–871 (1990)MathSciNetzbMATHGoogle Scholar
  77. Chuang Chi-tai (1937): Un théorème relatif aux directions de Borel des fonctions méromorphes d’ordre fini. C. R. Acad. Sci. Paris 204, 951–952, Zbl. 16, 126Google Scholar
  78. Chuang Chi-tai (1964): Une généralisation d’une inégalité de Nevanlinna Sci. Sin. 13, No.6, 887895, Zbl. 146, 102Google Scholar
  79. Chuang Chi-tai, Yang Lo (1985): Distributions of the values of meromorphic functions. Contemp. Math. 48, 21–63, Zbl. 578. 30019Google Scholar
  80. Clunie, J. (1965): On integral functions having prescribed asymptotic growth. Can. J. Math. 17, No.3, 396–404, Zbl. 134, 291Google Scholar
  81. Cuppens, R. (1969): On the decomposition of infinitely divisible characteristic functions with continuous Poisson spectrum, II. Pac. J. Math. 29, No.3, 521–525, Zbl. 183, 477Google Scholar
  82. Dektyarev, I.M. (1986): Multi-Dimensional Theory of Value Distribution. Itogi Nauki Tech., Ser. Sovrem. Probl. Mat., Fundam. Napravlenia. 9,37–71, Zbl. 658.32020. Engl. transl.: Encycl. Math. Sci. 9, Berlin Heidelberg New York, Springer-Verlag, 31–61 (1989)Google Scholar
  83. De Mar, R.F. (1962): Existence of interpolatory functions of exponential type. Trans. Am. Math. Soc. 105, No.3, 359–371. Zbl. 111, 71Google Scholar
  84. De Mar, R.F. (1965): On a theorem concerning existence of interpolatory functions. Trans. Am. Math. Soc. 114, No.1, 23–29, Zbl. 133, 35Google Scholar
  85. Dragilev, M.M., Zakharyuta, V.P., Korobejnik, Yu.F. (1974): Dual relation between some problems of basis theory and of interpolation. Dokl. Akad. Nauk SSSR 215, No.3, 522–525, Zbl. 306.46030. Engl. transl.: Sov. Math., Dokl. 15 (1974), 533–537 (1975)Google Scholar
  86. Drasin, D. (1977): The inverse problem of the Nevanlinna theory. Acta Math. 138, 83–151, Zbl. 355. 30028Google Scholar
  87. De Mar, R.F. (1987): Proof of a conjecture of F. Nevanlinna concerning functions which have deficiency sum two. Acta Math. 158, No.1–2, 1–94, Zbl. 622. 30028Google Scholar
  88. De Mar, R.F., Shea, D.F. (1972): Pôlya peaks and the oscillation of positive function. Proc. Am. Math. Soc. 34, No.2, 403–411, Zbl. 258. 26004Google Scholar
  89. De Mar, R.F. Weitsman, A. (1971): The growth of the Nevanlinna proximity function and the logarithmic potential. Math. J. Indiana Univ. 20, 699–715, Zbl. 223. 30038Google Scholar
  90. De Mar, R.F., Zhang Guanghou, Yang Lo, Weitsman, A. (1981): Deficient values of entire functions and their derivatives. Proc. Am. Math. Soc. 82, No.4, 607–612, Zbl. 473. 30025Google Scholar
  91. Duffin, R.J., Schaeffer, A.C. (1945): Power series with bounded coefficients. Am. J. Math. 67, 141–154, Zbl. 60, 209Google Scholar
  92. Dufresnoy, J. (1942): Sur quelques propriétés de cercles de remplissage des fonctions méromorphes. Ann. Sci. Ecole Norm. Supér., III. Sér. 59, 187–209, Zbl. 28, 225Google Scholar
  93. Dufresnoy, J. (1944): Théorie nouvelle des familles complexes normales. Applications à l’étude des fonctions algebroïdes. Ann. Sci. Ecole Norm. Supér., III. Sér. 61, 1–44, Zbl. 61, 152MathSciNetGoogle Scholar
  94. Dzhrbashyan, M.M. (1952): Theorems of representability and uniqueness for analytic functions. Izv. Akad. Nauk SSSR, Ser. Mat. 16, No.3, 225–252 ( Russian ), Zbl. 47, 74Google Scholar
  95. Dzhrbashyan, M.M. (1953): On integral representability and uniqueness of some classes of entire functions. Mat. Sb., Nov. Ser. 33, No.3, 485–530 ( Russian ), Zbl. 53, 376Google Scholar
  96. Dzhrbashyan, M.M. (1957): On some integral transform. Izv. Akad. Nauk Arm.SSR, Ser. Fiz.-Mat. Nauk, 10, No.4, 3–18 ( Russian ), Zbl. 79, 321Google Scholar
  97. Dzhrbashyan, M.M. (1966): Integral Transform and Representations of Functions in the Complex Plane. Moscow, Nauka, 671 pp. ( Russian ), Zbl. 154, 377Google Scholar
  98. Dzhrbashyan, M.M. (1970): Factorization of functions meromorphic in a finite plane. Izv. Akad. Nauk Arm.SSR, Mat. 5, No.6, 453–485 ( Russian ), Zbl. 219. 30018Google Scholar
  99. Dzhrbashyan, M.M. (1978): On an infinite product. Izv. Akad. Nauk Arm.SSR, Mat. 13, No.3, 175208, Zbl. 394. 30020.Google Scholar
  100. Dzhrbashyan, M.M. (1984): Interpolatory and spectral expansions associated with differential operators of fractional order. Izv. Akad. Nauk Arm.SSR, Mat. 19, No. 2, 81–181, Zbl. 547.30020. Engl. transl.: Sov. J. Contemp. Math. Anal., Arm. Acad. Sci. 19, No. 2, 116 pp. (1984)MathSciNetGoogle Scholar
  101. Dzhrbashyan, M.M., Rafaelyan, S.G. (1981): On entire functions of exponential type from the weight classes L2. Doklady Akad Nauk Arm.SSR 73, No.1, 29–36, Zbl. 481.30026 Edrei, A. (1965): Sums of deficiencies of meromorphic functions. J. Anal. Math. 14, 79–107, Zbl. 154, 74Google Scholar
  102. Dzhrbashyan, M.M. (1970): A local form of the Phragmén-Lindelöf indicator. Mathematika 17, 149172, Zbl. 207, 370Google Scholar
  103. Dzhrbashyan, M.M. (1973): Solution of the deficiency problem for functions of small lower order. Proc. Lond. Math. Soc., II. Ser. 26, 435–445, Zbl. 263. 30025Google Scholar
  104. Dzhrbashyan, M.M. (1986): Sections of the Taylor expansions of Lindelöf functions. J. Approximation Theory. 48, 361–395, Zbl. 612. 41037Google Scholar
  105. Epifanov, O.V., Korobejnik, Yu.F. (1987): On preserving the completely regular growth by a differential operator of infinite order. Teor. Funkts., Funkts. Anal. Prilozh. 47, 85–89, Zbl. 662.47024. Engl. transl • J Sov. Math. 48, No. 6, 681–683 (1990)MathSciNetzbMATHGoogle Scholar
  106. Erdös P.,, Kövari, T. (1956): On the maximum modulus of entire functions. Acta Math. Acad. Sci. Hung. 7, No.3–4, 305–316, Zbl. 72, 74Google Scholar
  107. Erdös P., Reddy, A.R. (1976): Rational approximation. Adv. Math. 21, 78–109, Zbl. 334. 30019Google Scholar
  108. Eremenko, A.E. (1977): On Valiron deficiences of entire characteristic functions. Ukr. Mat. Zh. 29, No.6, 807–809, Zbl. 377.30020. Engl. transl.: Ukr. Math. J. 29, 600–601 (1977)MathSciNetzbMATHGoogle Scholar
  109. Eremenko, A.E. (1978a): On the growth of Nevanlinna’s proximity function. Sib. Mat. Zh. 19, No.3, 571–576, Zbl. 388.30022. Engl. transl.: Sib. Math. J. 19, 401–404 (1979)zbMATHGoogle Scholar
  110. Eremenko, A.E. (1978b): On the set of asymptotic values of a meromorphic function of finite order. Mat. Zametki 24, No.6, 779–783, Zbl. 401.30023. Engl. transl.: Math. Notes 24, 914–916 (1979)zbMATHGoogle Scholar
  111. Eremenko, A.E. (1980): On the growth of entire and subharmonic functions on asymptotic curves. Sib. Mat. Zh. 21, No.5, 39–51, Zbl. 449.30020. Engl. transl.: Sib. Math. J. 21, 673683 (1981)Google Scholar
  112. Eremenko, A.E. (1982a): Meromorphic solutions of differential equations. Uspekhi Mat. Nauk 37, No.4, 53–82; Correction: 38 (1983), No.6, 177, Zbl. 515.34005 (Corr. Zbl. 542.34006). Engl. transl.: Russ. Math. Surv. 37, No. 4, 61–95 (1982)MathSciNetzbMATHGoogle Scholar
  113. Eremenko, A.E. (1982b): Meromorphic solutions of equations of the Briot-Bouquet type. Teor. Funkts., Funkts. Anal. Prilozh. 38, 48–56, Zbl. 515.34006. Engl. transl.: Transl., II. Ser., Am. Math. Soc. 133, 15–23 (1986)zbMATHGoogle Scholar
  114. Eremenko, A.E. (1983): On deviations of meromorphic functions of finite order. Teor. Funkts., Funkts. Anal. Prilozh. 40, 56–64, Zbl. 559.30026. Engl. transl.: Transl., II. Ser., Am. Math. Soc. 132, 45–54 (1986)zbMATHGoogle Scholar
  115. Eremenko, A.E. (1984): On meromorphic solutions of algebraic first-order differential equations. Funkts. Anal. Pril. 18, No.3, 78–79, Zbl. 656.34002. Engl. transl.: Funct. Anal. Appl. 18, 246–248 (1984)MathSciNetzbMATHGoogle Scholar
  116. Eremenko, A.E. (1985a): On Valiron exceptional values of entire functions of completely regular growth. Teor. Funkts., Funkts. Anal. Prilozh. 44, 48–52 (Russian), Zbl. 575.30025. Engl. transl.: J. Sov. Math. 48, No. 3, 281–285 (1990)MathSciNetzbMATHGoogle Scholar
  117. Eremenko, A.E. (1985b): Deficiencies and deviations of meromorphic functions of finite order. Doklady Akad. Nauk Ukr.SSR, Ser. A 1985 No.1, 18–20 ( Russian ), Zbl. 573. 30036Google Scholar
  118. Eremenko, A.E. (1986): The inverse problem of the theory of value distribution of finite-order meromorphic functions. Sib. Mat. Zh. 27, No.3, 87–102, Zbl. 598.30046. Engl. transi.: Sib. Math. J. 27, 377–390 (1986)MathSciNetzbMATHGoogle Scholar
  119. Eremenko, A.E. (1987): On the set of deficiency values of a finite-order entire function. Ukr. Mat. Zh. 39, No.3, 295–299, Zbl. 624.30037. Engl. transi.: Ukr. Math. J. 39,No. 2, 225–228 (1987)zbMATHGoogle Scholar
  120. Eremenko, A.E. (1992): A counterexample to the Arakelyan conjecture. Bull. Am. Math. Soc., New Ser. 27, 159–164, Zbl. 758. 30027Google Scholar
  121. Eremenko, A.E. (1993): Meromorphic functions with small ramification. Math. J. Indiana Univ. 42, No.4, 1193–1218, Zbl. 804. 30025Google Scholar
  122. Eremenko, A.E. Sodin, M.L. (1987): A proof of the conditional Littlewood theorem on value distribution of entire functions. Izv. Akad. Nauk SSSR, Ser. Mat. 51, No.2, 421428, Zbl. 627.30025. Engl. transl.: Math. USSR, Izv. 30, No. 2, 395–402 (1988)MathSciNetzbMATHGoogle Scholar
  123. Eremenko, A.E. Sodin, M.L. (1991a): Meromorphic functions of finite order with maximal deficiency sum. Teor. Funkts., Funkts. Anal. Prilozh. 59, 85–95. Engl. transi.: J.Sov. Math. 59, No. 1, 643–651 (1992)MathSciNetGoogle Scholar
  124. Eremenko, A.E. Sodin, M.L. (1991b): Distribution of values of meromorphic functions and meromorphic curves from the standpoint of potential theory. Algebra Anal. 3 (1991), No.1, 131–164. Engl. transl.: S.-Petersburg Math.J. 1, 109–136 (1992)Google Scholar
  125. Eremenko, A.E. Sodin, M.L., Shea, D.F. (1986): On the minimum of modulus of entire function on a sequence of P6lya peaks. Teor. Funkts., Funkts. Anal. Prilozh. 46, 26–40, Zbl. 605.30029. Engl. transl.: J. Sov. Math. 48, No. 4, 386–398 (1990)MathSciNetzbMATHGoogle Scholar
  126. Essén, M.R. (1975): The cosh. theorem. Lect. Notes Math. 467, 1–112, Zbl. 335. 31001Google Scholar
  127. Essén, M.R., Rossi, J., Shea, D.F. (1983): A convolution inequality with applications in function theory. Contemp. Math. 25, 141–147, Zbl. 535. 30032Google Scholar
  128. Evgrafov, M.A. (1954): The Abel-Gontcharoff Interpolation Problem. Moscow, GITTL, 127 pp. ( Russian ), Zbl. 58, 59Google Scholar
  129. Essén, M.R. (1956): The method of close systems in a space of analytic functions and its application to an interpolation problem. Tr. Mosk. Mat. O-va 5, 89–201 ( Russian ), Zbl. 72, 290Google Scholar
  130. Essén, M.R. (1976): Borel’s Generalized Transform. Inst. Appl. Math. Acad. Sci. USSR, Preprint No.35, Moscow, 57 pp. (Russian)Google Scholar
  131. Essén, M.R. (1978): On convergence of a class of interpolation problems. Inst. Appl. Math. Acad. Sci. USSR, Preprint No.89, Moscow, 72 pp. (Russian)Google Scholar
  132. Favorov, S.Yu. (1978): On summing indicators of entire and subharmonic functions of several variables. Mat. Sb., Nov. Ser. 105, 128–140, Zbl. 374.32001. Engl. transl.: Math. USSR, Sb. 34, 119–130 (1978)zbMATHGoogle Scholar
  133. Favorov, S.Yu. (1979): On lowering sets for subharmonic functions of completely regular growth. Sib. Mat. Zh. 20, No.6, 1294–1302, Zbl. 421.31004. Engl. transl.: Sib. Math. J. 20, 919–926 (1980)zbMATHGoogle Scholar
  134. Favorov, S.Yu. (1986): On lowering sets for entire and subharmonic functions. Mat. Zametki 40, No.4, 460–467, Zbl. 618–31001. Engl. transl.: Math. Notes 40 (1986), 766–770MathSciNetzbMATHGoogle Scholar
  135. Fajnberg, E.D. (1983): An integral with respect to non-additive measure and estimates of the indicator of an entire function. Sib. Mat. Zh. 24, No.1, 175–186, Zbl. 542.30032. Engl. transl.: Sib. Math. J. 24, 143–153 (1983)zbMATHGoogle Scholar
  136. Fenton, P.C. (1982): The minimum modulus of certain small entire functions. Trans. Am. Math. Soc. 271. No.1, 183–195, Zbl. 488. 30019Google Scholar
  137. Fenton, P.C. (1983): Entire functions having asymptotic functions. Bull. Aust. Math. Soc. 27, 321–328, Zbl. 514. 30020Google Scholar
  138. Firsakova, O.S. (1958): Some problems of interpolation by entire functions. Dokl. Akad. Nauk SSSR 120, No.3, 477–480 ( Russian ), Zbl. 144, 327Google Scholar
  139. Frank, G. (1970): Picardsche Ausnahmewerte bei Lösungen linearer Differentialgleichungen. Manuscr. Math. 2, 181–190, Zbl. 188, 144Google Scholar
  140. Frank, G., Wittich, H. (1973): Zur Theorie linearer Differentialgleichungen im Komplexen. Math. Z. 130, 363–370, Zbl. 248. 34004Google Scholar
  141. Frei, M. (1961): Über die Lösungen linearer Differentialgleichungen mit ganzen Funktionen als Koeffizienten. Comment. Math. Heiv. 35, 201–222, Zbl. 115, 69Google Scholar
  142. Fridman, A.N. (1980): Estimates from below of subharmonic functions. Ukr. Mat. Zh. 32, No.5, 701–706, Zbl. 445.31002. Engl. transi.: Ukr. Math. J. 32, 472–476 (1981)zbMATHGoogle Scholar
  143. Fryntov, A.E. (1975): On factorization of infinitely divisible distributions. Teor. Veroyatn. Primen. 20, No.3, 661–664, Zbl. 351.60026. Engl. transl.: Theory Probab. Appl. 20, 648–652 (1975)MathSciNetzbMATHGoogle Scholar
  144. Fryntov, A.E., (1990): A property of the cone generated by multiplicative shifts of a subharmonic ridge function. Analyticheskije Metody y Teoriji Verojatnostej i Teoriji Operatorov. Kiev, Naukova Dumka, 33–40 (Russian)Google Scholar
  145. Fryntov, A.E., Chistyakov, G.P. (1977): On belonging to the class 1 of the lattice of infinitely divisible distributions. Izv. Akad. Nauk SSSR, Ser. Mat. 41, No.2, 462–475, Zbl. 363.60021. Engl. transl.: Math. USSR, Izv. 11, 441–451 (1977)zbMATHGoogle Scholar
  146. Fuchs, W.H.J. (1958): A theorem on the Nevanlinna deficiencies of meromorphic functions of finite order. Ann Math., II. Ser. 68, No. 2, 203–209, Zbl. 83, 66Google Scholar
  147. Fuchs, W.H.J. (1977): A look at Wiman-Valiron theory. Lect. Notes Math. 599, 46–50, Zbl. 358. 30016Google Scholar
  148. Fuchs, W.H.J., Hayman, W.K. (1962): An entire function with assigned deficiencies. Essays in honor of George Pôlya. Stanford, Univ. Press, 117–125, Zbl. 114, 278Google Scholar
  149. Gavrilov, V.I. (1966): On meromorphic function behavior in a neighborhood of its essentially singular point. Izv. Akad. Nauk SSSR, Ser. Mat. 30, No.4, 767–788, Zbl. 171, 45. Engl. transl.: Transi., II. Ser., Am. Math. Soc. 71, 181–201 (1968)zbMATHGoogle Scholar
  150. Gakhov, F.D. (1977): Boundary Value Problems. Moscow, Nauka, 640pp. 3rd rev.ed. Engl. transl. of the 2nd Russ. ed.: Dover reprint, 1991. Zbl. 141,80, Zbl. 449.30030Google Scholar
  151. Gelfand, I.M., Shilov, G.E. (1958): Spaces of Test and Generalized Functions. Moscow, Fizmatgiz, 308 pp., Zbl. 91, 111Google Scholar
  152. Gelfond, A.O. (1937): The problem of representation and uniqueness of an entire analytic function of first order. Usp. Mat. Nauk 3, 144–174 (Russian)Google Scholar
  153. Gelfond, A.O. (1946): Construction and general form of functions from values of their derivatives at the points forming a geometric progression. Res. Works of Institutes belonging to Dpt. Phys.-Math. Sci. of Acad. Sci.,USSR for 1945. Moscow-Leningrad, 1946 (Russian)Google Scholar
  154. Gelfond, A.O. (1967): Calculus of Finite Differences. Moscow, Nauka, 376 pp. ( Russian ), Zbl. 152, 80Google Scholar
  155. Gelfond, A.O. (1973): Selected Works. Moscow, Nauka, 440 pp. ( Russian ), Zbl. 275. 01022Google Scholar
  156. Gelfond, A.O., Ibragimov, I.I. (1947): On functions whose derivatives equal zero at two points. Izv. Akad. Nauk SSSR, Ser. Mat. 11, No.6, 547–560 ( Russian ), Zbl. 32, 277Google Scholar
  157. Ghermanescu, M. (1940): Les combinations exceptionelles des fonctions entières et les fonctions algébroïdes. Paris, Hermann et C-ie, 36 pp., Zbl. 26, 398Google Scholar
  158. Giner, V.B. (1985): On structure of limit sets of plurisubharmonic functions of finite order in Cm. Kharkov, Kharkov University, 37 pp. (MS deponed in UkrNIINTI 04.16.1985, No.718 Uk-85 Dep) (Russian)Google Scholar
  159. Giner, V.B. (1987): On approximation of limit sets of subharmonic and entire functions in (by periodic limit sets. Kharkov, Kharkov University, 37 pp. (MS deponed in UkrNIINTI 03.27.87, No.1033 Uk-87 Dep.) (Russian)Google Scholar
  160. Giner, V.B., Podoshev, L.R., Sodin, M.L. (1984): On summing lower indicators of entire functions. Teor. Funkts., Funkts. Anal. Prilozh. 42, 27–36, Zbl. 561.30020. Engl. transl.: Transl., II. Ser., Am. Math. Soc. 132, 29–38 (1986)zbMATHGoogle Scholar
  161. Girnyk, M.A. (1981): On deficiences of derivatives of an entire function. Ukr. Mat. Zh. 33, No.4, 510–513, Zbl. 468.30022. Engl. transi.: Ukr. Math. J. 33, N. 4, 390392 (1982)Google Scholar
  162. Glejzer, E.V. (1985): On meromorphic functions with zeros and poles in small angles. Sib. Mat. Zh. 26, No.4, 22–37, Zbl, 578.30017. Engl. transi.: Sib. Math. J. 26, 493505 (1986)Google Scholar
  163. Glejzer, E.V. (1986): On the growth of entire functions with zeros on a system of rays. Ukr. Mat. Zh. 38, No.3, 297–302, Zbl. 605.30032. Engl. transl.: Ukr. Math. J. 38, 256–261 (1986)zbMATHGoogle Scholar
  164. Gohberg, I.Z., Krein, M.G. (1965): Introduction to the Theory of Linear Non-SelfAdjoint Operators in the Hilbert Space. Moscow, Nauka, 448 pp., Zbl. 138, 78. Engl. transl.: ( Providence AMS 1969 )Google Scholar
  165. Gol’dberg, A.A. (1956): On single-valued integrals of first-order differential equation. Ukr. Mat. Zh. 8, No.3, 254–261 ( Russian ), Zbl. 72, 92Google Scholar
  166. Gol’dberg, A.A. (1962): Extremal indicator for an entire function with positive zeros. Sib. Mat. Zh. 2, 170–177 ( Russian ), Zbl. 108, 73Google Scholar
  167. Gol’dberg, A.A. (1962): Integral with respect to a semi-additive measure and its application to the theory of entire functions, I. Mat. Sb., Nov. Ser. 58, No.3, 289–334 (Russian), Zbl. 121, 291. Engl. transi.: AMS Transi. 88, 105–162 (1970)Google Scholar
  168. Gol’dberg, A.A. (1963): same title, II. Mat. Sb., Nov. Ser. 61, No.3, 334–349 (Russian), Zbl. 141, 76. Engl. transl.: AMS Transi. 88, 163–180 (1970)Google Scholar
  169. Gol’dberg, A.A. (1964): same title, III. Mat. Sb., Nov. Ser. 65, No.3, 414–453 (Russian), Zbl. 141, 77. Engl. transi.: AMS Transl. 88, 181–232 (1970)Google Scholar
  170. Gol’dberg, A.A. (1965): same title, IV. Mat. Sb., Nov. Ser. 66, No.3, 411–457 (Russian), Zbl. 141, 77. Engl. transl.: AMS Transl. 88, 233–289 (1970)Google Scholar
  171. Gol’dberg, A.A. (1967): Letter to editors. Mat. Sb., Nov. Ser. 72, No.4, 637 (Russian), Zbl. 179, 387. Engl. transi.: Math. USSR, Sb. 1, 569 (1967)Google Scholar
  172. Gol’dberg, A.A. (1971): On deficiencies of entire functions of completely regular growth. Teor. Funkts., Funkts. Anal Prilozh. 14, 88–101 ( Russian ), Zbl. 239. 30033Google Scholar
  173. Gol’dberg, A.A. (1972): On representing a meromorphic function as a quotient of entire functions. Izv. Vyssh. Uchebn. Zaved. Mat. 1972, No.10, 13–17 ( Russian ), Zbl. 251. 30037Google Scholar
  174. Gol’dberg, A.A. (1973): On ramified values of entire functions. Sib. Mat. Zh. 14, No.4, 862–866, Zbl. 265.30033. Engl. transi.: Sib. Math. J. 14, 599–602 (1973)Google Scholar
  175. Gol’dberg, A.A. (1978): Counting functions for sequences of a-points of entire functions. Sib. Mat. Zh. 19, No.1, 28–36, Zbl. 386.30015. Engl. transi.: Sib. Math. J. 19, 19–25 (1978)zbMATHGoogle Scholar
  176. Gol’dberg, A.A. (1979): On the minimum of modulus of a slowly growing meromorphic function. Mat. Zametki 25, No.6, 835–844, Zbl. 421.30032. Engl. transi.: Math. Notes 25, 432–437 (1979)zbMATHGoogle Scholar
  177. Gol’dberg, A.A., Eremenko, A.E. (1979): On asymptotic curves of entire functions of finite order. Mat. Sb., Nov. Ser. 109, No.4, 555–581, Zbl. 416.30022. Engl. transl.: Math. USSR, Sb. 37, 509–533 (1980)zbMATHGoogle Scholar
  178. Gol’dberg, A.A., Eremenko, A.E., Ostrovskii, I.V. (1983): On a sum of entire functions of completely regular growth. Izv. Akad. Nauk Arm.SSR, Mat. 18, No.1, 3–14, Zbl. 513.30026. Engl. transi.: Sov. J. Contemp. Math. Anal., Arm. Acad. Sci. 18, No. 1, 1–12 (1983)MathSciNetzbMATHGoogle Scholar
  179. Gol’dberg, A.A., Eremenko, A.E., Sodin, M.L. (1987): Exceptional values in the sense of R. Nevanlinna and in the sense of V. Petrenko, I. Teor. Funkts., Funkts. Anal. Prilozh. 47, 41–51, Zbl. 636.30029. Engl. transi.: J. Sov. Math. 48, No. 6, 648–655 (1990)MathSciNetzbMATHGoogle Scholar
  180. Gol’dberg, A.A., Eremenko, A.E., Sodin, M.L. (1987): same title, II. Teor. Funkts., Funkts. Anal. Prilozh. 48, 58–70, Zbl. 698.30031. Engl. transi.: J. Sov. Math. 49, No. 2, 891–899 (1990)MathSciNetzbMATHGoogle Scholar
  181. Gol’dberg, A.A., Grinshtejn, V.A. (1976): On the logarithmic derivative of a meromorphic function. Mat. Zametki 19, No.4, 525–530, Zbl. 337.30021. Engl. transi.: Math. Notes 19, 320–323 (1976)zbMATHGoogle Scholar
  182. Gol’dberg, A.A., Korenkov, N.E. (1978): On the asymptotic behavior of the logarithmic derivative of an entire function of completely regular growth. Ukr. Mat. Zh. 30, No.1, 25–32, Zbl. 376.30005. Engl. transi.: Ukr. Math. J. 30, 17–22 (1978)zbMATHGoogle Scholar
  183. Gol’dberg, A.A., Korenkov, N.E. (1980): Asymptotics for the logarithmic derivative of an entire function of completely regular growth. Sib. Mat. Zh. 21, No.3, 63–79, Zbl. 441.30038. Engl. transl.: Sib. Math. J. 21, 363–367 (1981)zbMATHGoogle Scholar
  184. Gol’dberg, A.A., Korenkov, N.E., Ostrovskii, I.V. (1970): Value Distribution of Meromorphic Functions. Moscow, Nauka, 592 pp. ( Russian ), Zbl. 217, 100Google Scholar
  185. Gol’dberg, A.A., Korenkov, N.E. (1973): On derivatives and primitives of entire functions of completely regular growth. Teor. Funkts., Funkts. Anal. Prilozh. 19, 70–81, Zbl. 285.30020,–(1982): Indicators of entire Hermitian-positive functions of finite order. Sib. Mat. Zh. 23, No.6, 55–73, Zbl. 515.30015. Engl. transi.: Sib. Math. J. 23, 804–820 (1983)Google Scholar
  186. Gol’dberg, A.A., Korenkov, N.E. (1986): Indicators of entire absolutely monotonic functions of finite order. Sib. Mat. Zh. 27, No.6, 33–49, Zbl. 612.30028. Engl. transl.: Sib. Math. J. 27 (1986), 811–825zbMATHGoogle Scholar
  187. Gol’dberg, A.A., Korenkov, N.E. (1990): Indicators of entire functions of finite order representable by Dirichlet series. Algebra Anal. 2, No.3, 144–170, Zbl. 725.30016. Engl. transl.: Leningr. Math. J. 2, 589–612 (1991).zbMATHGoogle Scholar
  188. Gol’dberg, A.A., Sodin, M.L., Strochik, N.N. (1992): Meromorphic functions of completely regular growth and their logarithmic derivatives. Sib. Mat. Zh. 33, No.1, 44–52. Engl. transl.: Sib. Math. J. 33, No. 1, 34–40 (1992), Zbl. 788. 30014Google Scholar
  189. Gol’dberg, A.A., Strochik, N.N. (1985): Asymptotic behavior of meromorphic functions of completely regular growth and of their logarithmic derivatives. Sib. Mat. Zh. 26, No.6, 29–38, Zbl. 583.30029. Engl. transi.: Sib. Math. J. 26, (1985), 802–809; (1992): Corrigendum. Sib. Mat. Zh. 33, No.4, 219. Engl. transl.: Sib. Math. J. 33, No. 4, 742 (1992), Zbl. 788. 30017Google Scholar
  190. Gol’dberg, A.A., Tairova, V.G. (1963): On entire functions with two finite completely ramified values. Proc. Mech.-Math. Faculty of Kharkov Univ. and Math. Soc. 29, 67–78 (Russian)Google Scholar
  191. Gol’dberg, A.A., Tushkanov, S.B. (1971,1973): On exceptional combinations of entire functions. Teor. Funkts., Funkts. Anal. Prilozh. 13, 67–74; 18, 185–189, (Russian), Zbl. 235.30027; 285. 30021Google Scholar
  192. Gol’dberg, A.A., Zabolotskij, N.V. (1983a): The concentration index of a subharmonic function of zero order. Mat. Zametki 34, No.2, 227–236, Zbl. 558, 31004. Engl. transi.: Math. Notes 34, 596–601 (1984)zbMATHGoogle Scholar
  193. Gol’dberg, A.A., Zabolotskij, N.V. (1983b): On a-points of functions meromorphic in a disk. Sib. Mat. Zh. 24, No.3, 34–46, Zbl. 525.30022. Engl. transl.: Sib. Math. J. 24, 342–352 (1984)Google Scholar
  194. Golubev, V.V. (1950): Lectures on Analytic Theory of Differential Equations. Moscow-Leningrad, GITTL, 436 pp.; German transl.: Vorlesungen über Differentialgleichungen im Komplexen. Berlin, Deutscher Verlag der Wissenschaften, 1958, Zbl. 38, 242Google Scholar
  195. Gontcharoff, V.L. (1930): Recherches sur les dérivées succesives des fonctions analytiques. Géneralization de la série d’Abel. Ann. Sci. Ecole Norm. Super. 47, 1–78, Jbuch 56, 260Google Scholar
  196. Gontcharoff, V.L. (1932): Sur un procédé d’iteration. Corn. Khar. Mat. Soc. 4, No.5, 67–85, Zbl. 5, 59Google Scholar
  197. Gontcharoff, V.L. (1935): On convergence of Abel’s series. Mat. Sb. 42, 473–483 ( Russian ), Zbl. 13, 161Google Scholar
  198. Gontcharoff, V.L. (1937): Interpolation processes and entire functions. Usp. Mat. Nauk 3, 113–143 (Russian), (see Act. Sci. Indust. 465 ( Hermann, Paris) Zbl. 18, 74 )Google Scholar
  199. Govorov, N.V. (1966): Extremal indicator of an entire function with positive zeros of given upper and lower densities. Dopov. Akad. Nauk UkrSSR, No.2, 148–150 ( Ukrainian ), Zbl. 177, 103Google Scholar
  200. Gontcharoff, V.L. (1994): Riemann’s Boundary Problem with Infinite Index. Birkhäuser Verlag AG Griffiths, P., King, J. (1973): Nevanlinna theory and holomorphic mappings between algebraic varieties. Acta Math. 130, No.3–4, 145–220, Zbl. 258. 32009Google Scholar
  201. Grishin, A.F. (1968): On regularity of growth of subharmonic functions, I. Teor. Funkts., Funkts. Anal. Prilozh. 6, 3–29 ( Russian ), Zbl. 215, 427Google Scholar
  202. Grishin, A.F. (1968): same title, II. Teor. Funkts., Funkts. Anal Prilozh. 7, 59–84 ( Russian ), Zbl. 215, 427Google Scholar
  203. Grishin, A.F. (1969): same title, III. Teor. Funkts., Funkts. Anal Prilozh. 8, 126–135 ( Russian ), Zbl. 215, 427Google Scholar
  204. Grishin, A.F. (1983): On the sets of regular growth of entire functions, I. Teor. Funkts., Funkts. Anal. Prilozh. 40, 36–47 ( Russian ), Zbl. 601. 30036Google Scholar
  205. Grishin, A.F. (1984): same title, II. Teor. Funkts., Funkts. Anal. Prilozh. 41, 39–55 ( Russian ), Zbl. 601. 30037Google Scholar
  206. Grishin, A.F. (1984): same title, III. Teor. Funkts., Funkts. Anal. Prilozh. 42, 32–43 ( Russian ), Zbl. 601. 30038Google Scholar
  207. Grishin, A.F., Russakovskij, A.M. (1985): Free interpolation by entire functions. Teor. Funkts., Funkts. Anal. Prilozh. 44, 32–42, Zbl. 709.30033. Engl. transl.: J. Sov. Math. 40, No. 3, 267–275 (1990)Google Scholar
  208. Grishin, A.F., Sodin M.L. (1988): Growth along a ray, zero’s distribution with respect to arguments of entire function of finite order and a theorem of uniqueness. Teor. Funkts., Funkts. Anal Prilozh. 50, 47–61 (1988), Zbl. 698.30027. Engl. transl.: J. Sov.Math. 49, 1269–1279 (1990)MathSciNetzbMATHGoogle Scholar
  209. Gross, F. (1972): Factorization of meromorphic functions. Math. Research Center Naval Research Laboratory Washington, D. C.: U. S. Government Printing Office, 258 pp., Zbl. 266. 30006Google Scholar
  210. Gurin, L.S. (1948): On some interpolation problem. Mat. Sb. 22, No.3, 425–438 ( Russian ), Zbl. 31, 23Google Scholar
  211. Halphen, G.-H. (1881): Sur une série d’Abel. C. R. Acad. Sci. 93, 1003–1005, Jbuch 13, 180Google Scholar
  212. Hayman, W.K. (1952): The minimum modulus of large integral functions. Proc. Lond. Math. Soc., III. Ser. 2, 469–512, Zbl. 48, 55MathSciNetGoogle Scholar
  213. Hayman, W.K. (1960): Slowly growing integral and subharmonic functions. Comment. Math. Helv. 34, No.1, 75–84, Zbl. 123, 267Google Scholar
  214. Hayman, W.K. (1961): On the growth of integral functions on asymptotic paths. J.Indian Math. Soc. 24, No. 1–2, 251–264, Zbl. 113–286Google Scholar
  215. Hayman, W.K. (1964): Meromorphic Functions. Oxford, Clarendon Press, 192 pp., Zbl. 115, 62Google Scholar
  216. Hayman, W.K. (1972): On the Valiron deficiencies of integral functions of infinite order. Ark. Mat. 10, No.2, 163–172, Zbl. 258. 30027Google Scholar
  217. Hayman, W.K. (1974): The local growth of power series: a survey of the Wiman-Valiron method. Canad. Math. Bull. 17, No.3, 317–358, Zbl. 314. 30021Google Scholar
  218. Hayman, W.K. (1978): On Iversen’s theorem for meromorphic functions with few poles. Acta Math. 141, No.1–2, 115–145,, Zbl. 382. 30020Google Scholar
  219. Hayman, W.K. (1981): On a meromorphic function having few poles but not tending to infinity along a path. Ann. Pol. Math. 39, 83–91, Zbl. 462. 30020Google Scholar
  220. Hayman, W.K. (1982): The proximity function in Nevanlinna theory. J. Lond. Math. Soc., II. Ser. 25, 473–482, Zbl. 485. 30029Google Scholar
  221. Heins, M. (1948): On the Denjoy-Carleman-Ahlfors theorem. Ann. Math. 49, 533537, Zbl. 31, 301Google Scholar
  222. Hellerstein, S., Shea, D. (1978): Minimal deficiencies for entire functions with radially distributed zeros. Proc. Lond. Math. Soc., III. Ser. 37, No.1, 35–55, Zbl. 394. 30022Google Scholar
  223. Hellerstein, S., Williamson, J. (1969): Entire functions with negative zeros and a problem of R. Nevanlinna J Anal. Math. 22, 233–267, Zbl. 18, 5, 144.Google Scholar
  224. Higgins, J.R. (1985): Five short stories about cardinal series. Bull. Am. Math. Soc., New Ser. 12, No.1, 45–89, Zbl. 562. 42002Google Scholar
  225. Hörmander, L. (1963): Supports and singular supports of convolutions. Acta Math. 110, No.3–4, 279–302, Zbl. 188, 194Google Scholar
  226. Hörmander, L. (1983): The Analysis of Partial Linear Differential Operators, 1, 2. BerlinHeidelberg-New York-Tokyo, Springer-Verlag, 391 pp.; 392 pp., Zbl. 521.35001, Zbl. 521. 35002Google Scholar
  227. Hörmander, L., Sigurdsson R. (1989): Limit sets of plurisubharmonic functions. Math. Scand. 65, 308–320, Zbl. 718. 32016Google Scholar
  228. Hruscev, S.V. (1979): Theorems on bases of exponential functions and Muckenhoupt’s condition. Dokl. Acad. Nauk SSSR 247, No. 1, 44–48. Engl. transl.: Soy. Math., Dokl. 20, 665–669 (1979)MathSciNetGoogle Scholar
  229. Hruscev, S.V., Nikol’skij, N.K., Pavlov, B.S. (1981): Unconditional bases of exponentials and of reproducing kernels. Lect. Notes Math. 864, 214–335, Zbl. 466. 46018Google Scholar
  230. Hyllengren, A. (1970): Valiron deficient values for meromorphic functions in the plane. Acta Math. 124, No.1–2, 1–8, Zbl. 207, 373Google Scholar
  231. Hua Xin-hou (1990): On a problem of Hayman. Kodai Math.J., 13, 386–390, Zbl. 714. 30031Google Scholar
  232. Ibragimov, I. I. (1939): On completeness of some systems of analytic functions. Izv. Akad. Nauk SSSR, Ser. Mat. 3, 553–568 ( Russian ), Zbl. 24, 215Google Scholar
  233. Ibragimov, I. I. (1971): Methods of Interpolation of Functions and Some Applications. Moscow, Nauka, 580 pp. ( Russian ), Zbl. 235. 30040Google Scholar
  234. Ibragimov, I. I., Keldysh, M.V. (1947): On interpolation of entire functions. Mat. Sb. 20, No.2, 283–292 ( Russian ), Zbl. 41, 200Google Scholar
  235. Ince, E.L. (1944) Ordinary Differential Equations. N. Y., Dover, 719 pp.Google Scholar
  236. Kagan, A.M., Linnik, Yu.V., Rao, S.R. (1972): Characterization Problems of Mathematical Statistics. Moscow, Nauka, 656 pp. (Russian), Zbl. 243.62009. Engl. transl.: Wiley, 1973, Zbl. 271. 62002Google Scholar
  237. Kamynin, I.P., Ostrovskii, I.V. (1982): On zero sets of entire Hermitian-positive functions. Sib. Mat. Zh. 23, No.3, 66–82, Zbl. 502.32002. Engl. transl.: Sib. Math. J. 23, 344–357 (1983)zbMATHGoogle Scholar
  238. Karlin, S. (1968): Total Positivity, I. Stanford Univ. Press, 576 pp., Zbl. 219. 47030Google Scholar
  239. Katkova,O.M., Ostrovskii, I.V. (1989): Zero sets of entire generating functions of Pôlya frequency sequences of finite order. Izv. Akad. Nauk SSSR, Ser. Mat. 53, No.4, 771–784, Zbl. 696.30028. Engl. transl.: Math. USSR, Izv. 35, No. 1, 101–112 (1990)Google Scholar
  240. Katsnelson, V.E. (1971): On bases of exponential functions in L2. Funkts. Anal. Prilozh. 5, No.1, 37–47, Zbl. 233.46042. Engl. transl.: Funct. Anal. Appl. 5, 31–38 (1971)Google Scholar
  241. Katsnelson, V.E. (1976): Entire functions of Cartwright’s class with irregular behavior. Funkts. Anal. Prilozh. 10, No.4, 35–44, Zbl. 348.30023. Engl. transl.: Funct. Anal. Appl. 10 (1976), 278–286 (1977)Google Scholar
  242. Katsnelson, V.E. (1984): To the theory of entire functions of Cartwright’s class. Teor. Funkts., Funkts. Anal. Prilozh. 42, 57–62, Zbl. 557.30029. Transl., II. Ser., Am. Math. Soc. 132, 39–44 (1986)Google Scholar
  243. Katznelson, Y., Mandelbrojt, S. (1963): Quelques classes de fonctions entières. Le problème de Gelfand et Silov. C. R. Acad. Sci. Paris 257, No.2, 345–348, Zbl. 118, 69Google Scholar
  244. Kazmin, Yu.A. (1965a): On some Gelfond-Ibragimov problem, I. Vestn. Mosk. Univ., Ser. I 20, No.3, 28–36, ( Russian ), Zbl. 171, 45Google Scholar
  245. Katsnelson, V.E. (1965b): same title, II. Vestn. Mosk. Univ., Ser. I 20, No.6, 37–44 ( Russian ), Zbl. 171, 45Google Scholar
  246. Kazmin, Yu.A. (1965c): Two-point problem in the theory of analytic functions. Sib. Mat. Zh. 6, No.4, 938–943 ( Russian ), Zbl. 192, 169Google Scholar
  247. Kazmin, Yu.A. (1966a): Lidstone’s problem and some its generalizations. Vestn. Mosk. Univ., Ser. I 21, No.6, 40–51 ( Russian ), Zbl. 156, 79Google Scholar
  248. Kazmin, Yu.A. (1966b): To the problem of reconstructing an analytic function from its elements. Izv. Akad. Nauk SSSR, Ser. Mat 30, No.2, 307–324 ( Russian ), Zbl. 156, 80Google Scholar
  249. Kazmin, Yu.A. (1967a): The moment problem in the complex plane. Vestn. Mosk. Univ., Ser. I 22, No.1, 3–11 ( Russian ), Zbl. 152, 120Google Scholar
  250. Kazmin, Yu.A. (1967b): On some interpolation problem, I, II. Sib. Mat. Zh. 8, No.2, 293–312; No.3, 587–600 ( Russian ), Zbl. 155–116Google Scholar
  251. Khomyak, M.M. (1982): On the maximum term of the Dirichlet series representing an entire function. Izv. Vyssh. Uchebn. Zaved. Mat. 10, 79–81, Zbl. 506.30003. Engl. transl.: Sov. Math. 26, No. 10, 92–95 (1982)MathSciNetzbMATHGoogle Scholar
  252. Kazmin, Yu.A. (1983): The Wiman-Valiron method for entire functions given by Dirichlet series with conditions on the growth on a sequence. Ukr. Mat. Zh. 35, No.4, 527–533, Zbl. 523.30002. Engl. transi.: Ukr. Math. J. 35, 447–451 (1983)Google Scholar
  253. Kjellberg, B. (1948): On certain integral and harmonic functions. A study in minimum modulus. Thesis, Uppsala, Appelbergs Boktryckeriaktiebolag, 64 pp., Zbl. 31, 160Google Scholar
  254. Kjellberg, B. ( 1973, 1974): The convexity theorem of Hadamard-Hayman. Proc. Symp. Math. R. Inst. Technol., Stockholm, 84–114Google Scholar
  255. Klingen, B. (1968): Wachstumsvergleich bei ganzen analytischen Funktionen. Math. Ann. 175, 50–80, Zbl. 179, 388Google Scholar
  256. Kolomijtseva, T.A. (1972): On asymptotic behavior of an entire function with regular distribution of roots. Teor. Funkts., Funkts. Anal. Prilozh. 15, 35–43 ( Russian ), Zbl. 239. 30025Google Scholar
  257. Kondratyuk, A.A. (1967): Extremal indicator of an entire function with positive zeros, I, II. Litov. Mat. Sb. 7, No.1, 79–117; 8, No.1, 65–85 (Russian), I Zbl. 172, 365; II Zbl. 172, 366Google Scholar
  258. Kondratyuk, A.A. (1970): Entire functions with the finite maximal zero density, I, II. Teor. Funkts., Funkts. Anal. Prilozh. 10, 57–70; 11, 35–40 (Russian), I Zbl. 215, 428; II Zbl. 218. 30029Google Scholar
  259. Kondratyuk, A.A. (1978): A Fourier series method for entire and meromorphic functions of completely regular growth, I. Mat. Sb. 106, No.3, 386–408, Zbl. 392.30018. Engl. transl.: Math. USSR, Sb. 35, 63–84 (1979)zbMATHGoogle Scholar
  260. Kondratyuk, A.A. (1980): same title, II. Mat. Sb. 113, No.1, 118–132 ( Russian ), Zbl. 441. 30036Google Scholar
  261. Kondratyuk, A.A. (1983): same title, III. Mat. Sb. 120, No. 3, 331–343, Zbl. 516.30021. Engl. transl.: Math. USSR, Sb. 48, 327–338 (1984)MathSciNetGoogle Scholar
  262. Kondratyuk, A.A. (1988): Fourier Series and Meromorphic Functions. Lvov, Vyshcha Shkola, 196 pp. ( Russian ), Zbl. 629. 30029Google Scholar
  263. Kondratyuk, A.A., Fridman, A.N. (1972): Limit values of the lower indicator and estimates from below of entire functions with positive zeros. Ukr. Mat. Zh. 24, No.4, 488–494 ( Russian ), Zbl. 238. 30026Google Scholar
  264. Koosis, P. (1977): Fonctions de type exponentiel presque bornées et de croissance irréguliere sur l’axe réel. C. R. Acad. Sci. Paris, Ser. A 285, No.5, 345–346, Zbl. 373. 30024Google Scholar
  265. Koosis, P. (1981): Entire functions of exponential type as multipliers for weight functions. Pac. J. Math. 95, No.1, 105–123, Zbl. 481. 30025Google Scholar
  266. Koosis, P. (1983): La plus petite majorante surharmonique. Ann Inst. Fourier 33, No.1, 67–107, Zbl. 507. 30021Google Scholar
  267. Koosis, P. (1992): The logarithmic Integral, II. Cambridge Univ. Press, 574 pp., Zbl. 791. 30020Google Scholar
  268. Koosis, P. (in preparation): Leçons sur le théorème de Beurling et MalliavinGoogle Scholar
  269. Korobejnik, Yu.F. (1975): On some dual problem, I, II. Mat. Sb. 97, No.2, 193–229; 98, No.1, 3–26, I Zbl. 325.46010; II 325.46011. Engl. transl.: I Math. USSR, Sb. 26 (1975), 181–212 (1976); II Math. USSR, Sb. 27 (1975), 1–22 (1977)zbMATHGoogle Scholar
  270. Korobejnik, Yu.F. (1978): A problem of moments, interpolation and bases. Izv. Akad. Nauk SSSR, Ser. Mat. 42, No.5, 989–1020, Zbl. 405.46030. Engl. transi.: Math. USSR, Izv. 13, 277–300 (1979)zbMATHGoogle Scholar
  271. Korobejnik, Yu.F. (1980): Interpolation problems, nontrivial expansion of zeros and representing systems. Izv. Akad. Nauk SSSR, Ser. Mat. 44, No.5, 10664–1114, Zbl. 445.30004. Engl. transi.: Math. USSR, Izv. 17, 299–337 (1981)zbMATHGoogle Scholar
  272. Korobejnik, Yu.F. (1981): Representing systems. Usp. Mat. Nauk 36, No.1, 73–126, Zbl. 483.30003. Engl. transi.: Russ. Math. Surv. 36, No. 1, 75–137 (1981)zbMATHGoogle Scholar
  273. Korobejnik, Yu.F. (1985): On one interpolation problem for entire functions. Izv. Vyssh. Uchebn. Zaved. Mat., No.2, 37–45 ( Russian ), Zbl. 572. 30030Google Scholar
  274. Kotelnikov, V.A. (1933): On conducting ability of “ether” and wires in telecommunication. Materials to the 1-st All-Union Congress on Reconstruction of Communication and Development of the Weak Current Industry, Moscow, RKKA Izd. ( Russian )Google Scholar
  275. Krasichkov, I.F. (1965): Lower estimates for entire functions of finite order. Sib. Mat. Zh. 6, No.4, 840–861, Zbl. 168, 319. Engl. transi.: Transi., II. Ser., Am. Math. Soc. 83, 197–222 (1969)zbMATHGoogle Scholar
  276. Krasichkov, I.F. (1966): Comparison of functions of finite order using their roots distribution. Mat. Sb. 70, No.2, 198–230 ( Russian ), Zbl. 171, 45Google Scholar
  277. Krasichkov, I.F. (1966): Comparison of entire functions integer order using distribution of their zeros. Mat. Sb. 71, No.3, 405–419 ( Russian ), Zbl. 168, 320Google Scholar
  278. Krasichkov, I.F. (1967): On homogeneity properties of entire functions of finite order. Mat. Sb. 72, No.3, 412–419, Zbl. 157, 395. Engl. transi.: Math. USSR, Sb. 1 (1967), 375–381 (1968)zbMATHGoogle Scholar
  279. Krasichkov, I.F. (1978): A geometric lemma usefull in the theory of entire functions and Levinson-type theorems. Mat. Zametki 24, No.4, 531–546 (Russian), Zbl. 393.30022. Engl. transi.: Math. Notes 24, 784–792 (1979)zbMATHGoogle Scholar
  280. Krasichkov, I.F. (1986): On absolute completeness of exponential systems on a segment. Mat. Sb. 131, No.3, 309–322. Zbl. 626.42017. Engl. transi.: Math. USSR, Sb. 59, No. 2, 303–315 (1988)zbMATHGoogle Scholar
  281. Krein, M.G. (1947): A contribution to the theory of entire functions of exponential type. Izv. Akad. Nauk SSSR, Ser. Mat. 11, 309–326 ( Russian ). Zbl. 33, 365Google Scholar
  282. Krein, M.G. (1952): On an indefinite case of the Sturm-Liouville boundary problem in the interval (0, oo). Izv. Akad. Nauk SSSR, Ser. Mat. 16, No.5, 293–324 ( Russian ), Zbl. 48, 326Google Scholar
  283. Kubota, Y. (1969): On meromorphic functions of order zero. Kodai Math. Semin. Rep. 21, No.4, 405–412, Zbl. 204, 88Google Scholar
  284. Laine, I. (1971): On the behavior of the solutions of some first-order differential equations. Ann. Acad. Sci. Fenn., Ser. AI, 497, 1–26, Zbl. 233. 34007Google Scholar
  285. Lapin, G.P. (1965): On entire functions of finite order assuming given values at given points together with their derivatives. Sib. Mat. Zh. 6, No.6, 1267–1281 ( Russian ), Zbl. 173, 318Google Scholar
  286. Leontiev, A.F. (1948): On interpolation in the class of entire functions of finite order. Dokl. Akad. Nauk SSSR, No.5, 785–787 ( Russian ), Zbl. 38, 51Google Scholar
  287. Leontiev, A.F. (1949): On interpolation in the class of entire functions of finite order and of normal type. Dokl. Akad. Nauk SSSR 66, No.2, 153–156 ( Russian ), Zbl. 41, 404Google Scholar
  288. Leontiev, A.F. (1957): To a problem of interpolation in the class of entire functions of finite order. Mat. Sb., Nov. Ser. 41, No.1, 81–96 ( Russian ), Zbl. 78, 260Google Scholar
  289. Leontiev, A.F. (1958): On values of entire functions of finite order at given points. Izv. Akad. Nauk SSSR, Ser. Mat. 22, No.3, 387–394 ( Russian ), Zbl. 166, 325Google Scholar
  290. Leontiev, A.F. (1976): Series of Exponentiais. Moscow, Nauka, 536 pp. (Russian), Zbl. 433.30002 Levin, B.Ya. (1940): On some applications of the Lagrange interpolatory series in the theory of entire functions. Mat. Sb. 8, No.3, 437–454 ( Russian ), Zbl. 24, 218Google Scholar
  291. Leontiev, A.F. (1961): On bases in L2(-ir,7r) formed by exponential functions. Kharkov, Uch. Zap. Univ. 115, Zap. Mat. Otd. Fiz.-Mat. Fak. Mat. O-va 27, 39–48 (Russian)Google Scholar
  292. Leontiev, A.F. (1969): Interpolation by entire functions of exponential type. Proc. FTINT Akad. Nauk Ukr.SSR, Kharkov 1, 136–146 (Russian)Google Scholar
  293. Leontiev, A.F. (1978): Additions ând Corrections to the book “Distribution of Zeros of Entire Functions”. Preprint FTINT Akad. Nauk Ukr.SSR, 60 pp. (Russian)Google Scholar
  294. Leontiev, A.F. (1980): Distribution of Zeros of Entire Functions. Amer. Math. Soc. Providence, R. I., 524 pp., Zbl. 111, 73 ( 1962 Berlin, Akademie-Verlag )Google Scholar
  295. Leontiev, A.F., Lyubarskij, Yu.I. (1975): Interpolation by special classes of entire functions and related expansions into exponential series. Izv. Akad. Nauk SSSR, Ser. Mat. 39, No.3, 657–702, Zbl. 324.30046. Engl. transi.: Math. USSR, Izv. 9, 621–662 (1976)Google Scholar
  296. Lewis, J.L. (1978): Note on the Nevanlinna proximity function. Proc. Amer. Math. Soc. 69, No.1, 129–134, Zbl. 382. 30019Google Scholar
  297. Lewis, J.L., Rossi, J., Weitsman, A. (1984): On the growth of subharmonic functions along paths. Ark. Mat. 22, No.1, 109–119, Zbl. 547. 31003Google Scholar
  298. Linnik, Yu.V., Ostrovskii, I.V. (1972): Decomposition of Random Variables and Vectors. Moscow, Nauka 1972, Zbl. 285.60009. Engl. transi.: Am. Math. Soc., Providence, R. I., 1977, Zbl. 358. 60020Google Scholar
  299. Logvinenko, V.N. (1972,1973): On entire functions with zeros on a half-line, I, II. Teor. Funkts., Funkts. Anal. Prilozh. 16, 154–158; 17, 84–99 (Russian), I Zbl. 251.30022; II Zbl. 284. 30016Google Scholar
  300. Lyubarskij, Yu.I., Sodin, M.L. (1986): Analogs of a function of the sine-type for convex domains. FTINT Akad. Nauk Ukr.SSR, Preprint 17–86, Kharkov, 42 pp. (Russian)Google Scholar
  301. Macintyre, A.J. (1939): Laplace’s transformation and integral functions. Proc. Lond. Math. Soc., II. Ser. 45, No.1, 1–20, Zbl. 20, 377Google Scholar
  302. Macintyre, A.J., Wilson, R. (1934): On the order of the interpolated integral functions and on meromorphic functions with given poles. Q. J. Math. 5, 211–220, Zbl. 9, 361 Macintyre, S.S. (1947): An upper bound for the Whittaker constant. J. London Math. Soc. 22, 305–311, Zbl. 29, 394Google Scholar
  303. Macintyre, A.J. (1949): On the zeros of succesive derivatives of integral functions. Trans. Amer. Math. Soc. 67, No.2, 241–251, Zbl. 35, 49Google Scholar
  304. Macintyre, A.J. (1953): An interpolation series for integral functions. Proc. Edinb. Math. Soc. II. Ser. 9, Part I, 1–6, Zbl. 52, 73Google Scholar
  305. Maergojz, L.S. (1985): On representing systems of entire functions in (p, a)-convex domains. Dokl. Akad. Nauk SSSR 285, No.5, 1058–1061, Zbl. 622.30027. Engl. transl.: Sov. Math., Dokl. 32, 833–836 (1985)zbMATHGoogle Scholar
  306. Maergojz, L.S. (1987): Plane indicator diagram for an entire function of integer order p > 1. Sib. Mat. Zh. 28, No.2, 107–123, Zbl. 627.30022. Engl. transi.: Sib. Math. J. 28, 263–277 (1987)zbMATHGoogle Scholar
  307. Malmquist, J. (1913): Sur les fonctions à une nombre fini de branches satisfaisant à une équation différentielle du premier ordre. Acta math 36, 297–343, Jbuch 44, 384Google Scholar
  308. Malmquist, J. (1920): Sur les fonctions à une nombre fini de branches satisfaisant à une équation différentielle du premier ordre. Acta Math. 42, 317–325, Jbuch 47, 402Google Scholar
  309. Malyutin, K.G. (1980): Interpolation by Holomorphic Functions. Cand. sci. thesis, Kharkov, 104 pp. (Russian)Google Scholar
  310. Mandelbrojt, S. (1960): Sur un probléme de Gelfand et Shilov. Ann. Sci. Ecole Norm. Sup. 77, No.2, 145–166, Zbl. 95, 47Google Scholar
  311. Mandelbrojt, S. (1962/1963): Transformées de Fourier des fonctions entiéres et séries de Dirichlet; un principe de dualité. J. Anal. Math. 10, 381–404, Zbl. 115, 289Google Scholar
  312. Marchenko I.I. (1982): On the growth of meromorphic functions of finite lower order. Dokl. Akad. Nauk SSSR 264 No.5, 1077–1080,, Zbl. 506.30019. Engl. transi.: Soy. Math., Dokl. 25 822–825 (1982)Google Scholar
  313. Marchenko, V.A. (1950): On some problems of approximating continuous functions on the entire real axis, III. Proc. Phys. Mat. Fac. and Kharkov Math. Soc. 22, 115–125 (Russian)Google Scholar
  314. Marchenko, V.A., Ostrovskii, I.V. (1975): Characteristization of the spectrum of Hill’s operator.Google Scholar
  315. Mat. Sb. 97, No. 4, 540–606, Zbl. 327.34021. Engl. transl.: Math. USSR, Sb. 26 (1975), 493–554 (1977)Google Scholar
  316. Mase, S. (1975): Decomposition of infinitely divisible characteristic functions with absolutely continuous Poisson spectral measure. Ann. Inst. Stat. Math. 27, No.2, 289–298, Zbl. 353. 60028Google Scholar
  317. Matsuda, M. (1980): First order algebraic differential equations. Berlin, Springer-Verlag, 109 pp., Zbl. 447. 12014Google Scholar
  318. Matison, H. (1938): Certain integral functions related to exponential sums. Duke Math. J. 4, 9–29, Zbl. 19, 125Google Scholar
  319. Mergelyan, S.N. (1952): Uniform approximation of a function of a complex variable. Usp. Mat. Nauk 7, No. 2, 31–122, Zbl. 49, 327. Engl. transl.: Transi., II. Ser., Am. Math. Soc. 101, 99 pp. (1954)MathSciNetGoogle Scholar
  320. Miles, J. (1969): A note on Ahlfors theory of covering surfaces. Proc. Amer. Math. Soc. 21, No.1, 30–32, Zbl. 172, 370Google Scholar
  321. Miles, J. (1972): Quotient representations of meromorphic functions. J. Anal. Math. 25, 371–388, Zbl. 247. 30019Google Scholar
  322. Miles, J. (1979): On entire functions of infinite order with radially distributed zeros. Pacif. J. Math. 81, No.1, 131–157, Zbl. 409. 30026Google Scholar
  323. Miles, J. (1986): On the growth of meromorphic functions with radially distributed zeros and poles. Pac. J. Math. 122, No.1, 147–167, Zbl. 582. 30020Google Scholar
  324. Miles, J., Shea, D.F. (1976): On the growth of meromorphic functions having at least one deficient value. Duke Math. J. 43, No.1, 171–186, Zbl. 333. 30017Google Scholar
  325. Milloux, H. (1951): Sur les directions de Borel des fonctions entiéres, de leurs dérivées et de leurs integrales. J. Anal. Math. 1, 244–330, Zbl. 45, 355Google Scholar
  326. Mokhon’ko[=Mokhonko], A.Z., Mokhon’ko, V.D. (1974): Estimates of the Nevanlinna characteristics of some classes of meromorphic functions and their applications to differential equations. Sib. Mat. Zh. 15, No.6, 1305–1322, Zbl. 303.30024. Engl. transl.: Sib. Math. J. 15 (1974), 921–934 (1975)Google Scholar
  327. Mokhon’ko, V.D. (1973): On meromorphic solutions of linear differential equations with meromorphic coefficients. Differ. Uravn. 11, No.8, 1534–1536, Zbl. 271.34016. Engl. transl.: Differ. Equations 9 (1973), 1185–1187 (1975)zbMATHGoogle Scholar
  328. Mokhon’ko, V.D. (1978): On deviation values of a transcendent solution of a differential equation. Differ. Uravn. 14, No.7, 1328–1331, Zbl. 423.34009. Engl. transl.: Differ. Equations 14, 949–951 (1978)Google Scholar
  329. Mokhon’ko, V.D. (1980): On meromorphic solutions of systems of linear differential equations with meromorphic coefficients. Differ. Uravn. 16, No.8, 1417–1426, Zbl. 445.34001. Engl. transl.: Differ. Equations 16, 908–914 (1981)Google Scholar
  330. Montel, P. (1927): Leçons sur les familles normales de fonctions analytiques et leurs applications. Paris, Gauthier-Villars, 306 pp., Jbuch 53, 303Google Scholar
  331. Mursi, Z. (1949): Sur l’ordre de fonctions entiéres définies par interpolation. Bull. Sci. Math. II. Ser. 73, 96–112, Zbl. 35, 338Google Scholar
  332. Mursi, M., Winn, E. (1933): On the interpolated integral function of given order. Quart. J. Math. 4, 173–178, Zbl. 8, 264Google Scholar
  333. Nevanlinna, R. (1929): Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Paris, Gauthier-Villars, 174 pp., Jbuch 55, 773Google Scholar
  334. Nevanlinna, R. (1932): Über Riemannsche Flächen mit endlich vielen Windungspunkten. Acta Math. 58, 295–373, Zbl. 4, 355Google Scholar
  335. Nevanlinna, R. (1953): Eindeutige analytische Funktionen. Berlin-Göttingen-Heidelberg, Springer-Verlag, 2nd ed., 379 pp., Zbl. 50, 303Google Scholar
  336. Nörlund, N.E. (1924): Differenzenrechnung. Berlin, Springer-Verlag, 552 pp., Jbuch 50, 318Google Scholar
  337. Nikol’skij, N.K. (1980): Bases of exponentials and of values of reproducing kernels. Dokl. Akad. Nauk SSSR 252, No.6, 1316–1320 (Russian), Zbl. 493.42024. Engl. transi.: Sov. Math., Dokl. 21, 937–941 (1980)zbMATHGoogle Scholar
  338. Nochka, E.I. (1982a): Deficiency relations for meromorphic curves. Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No.1, 41–47 ( Russian ), Zbl. 506. 32012Google Scholar
  339. Nevanlinna, R. (1982b): On some theorem of linear algebra. Izv. Akad. Nauk Mo1d.SSR, Ser. Fiz.-Tekh. Mat. Nauk, No.3, 29–33 ( Russian ), Zbl. 517. 32013Google Scholar
  340. Osgood, C.F. (1985): Sometimes effective Thue-Siegel-Roth-Nevanlinna bounds, or better. J. Number Theory 21, No.3, 347–389, Zbl. 575. 10032Google Scholar
  341. Oskolkov, V.A. (1973): On estimates of Gontcharoff’s polynomial. Mat. Sb., Nov. Ser. 92, No.1, 55–59, Zbl. 281.30031. Engl. transi.: Math. USSR, Sb. 21 (1973), 57–62 (1974)zbMATHGoogle Scholar
  342. Ostrovskii, I.V. (1965): Some theorems on decompositions of probability laws. Tr. Mat. Inst. Steklov. 79, 198–235, Zbl. 137, 122. Engl. transi.: Proc. Steklov Inst. Math. 79, 221–259, (1965)MathSciNetGoogle Scholar
  343. Ostrovskii, I.V. (1968): On entire functions satisfying some special inequalities connected with the theory of characteristic functions of probability laws. Select. Translat. Math. Statist. Probab. 7, 203–234, Zbl. 249. 60005Google Scholar
  344. Ostrovskii, I.V. (1976): On a class of entire functions. Dokl. Akad. Nauk SSSR 229, 39–41, Zbl. 359.30007. Engl. transi.: Soy. Math., Dokl. 17, 977–981 (1976)zbMATHGoogle Scholar
  345. Ostrovskii, I.V. (1982): Zero sets of entire Hermitian-positive functions. Teor. Funkts., Funkts. Anal. Prilozh. 37, 102–110 ( Russian ), Zbl. 522. 32002Google Scholar
  346. Ostrovskii, I.V. (1982): On the growth of entire and analytic in the half-plane ridge functions. Mat. Sb., Nov. Ser. 119, No.1, 150–159, Zbl. 527.30016. Engl. transi.: Math. USSR, Sb. 47, 145–154 (1982)Google Scholar
  347. Ostrovskii, I.V. (1986): The arithmetic of probability distributions. Theory. Prob. Appl. 31, 1–24, Zbl. 602. 60021Google Scholar
  348. Ostrovskii, I.V. (1992): Solvability conditions for the homogeneous Riemann boundary problem with an infinite index. Adv. Soy. Math., 11, 107–135, Zbl. 769. 30032Google Scholar
  349. Ostrovskii, I.V., Vishnyakova, A.M. (1987): An analog of the Marcinkiewicz theorem for entire functions without zeros in an angular domain. Dokl. Akad. Nauk Ukr.SSR, Ser. A, 1987, No.9, 8–11 ( Russian ), Zbl. 629. 30026Google Scholar
  350. Oum Ki-Choul (1969); Bounds for the number of deficient values of entire functions whose zeros have angular densities. Pac. J. Math. 29, No.1, 187–202, Zbl. 177, 331Google Scholar
  351. Pavlov, B.S. (1979): The property to form a basis for a system of exponential functions, and the Muckenhoupt condition. Dokl. Akad. Nauk SSSR 247, No.1, 37–40, Zbl. 429.30004. Engl. transi.: Soy. Math., Dokl. 20, 655–659 (1979)zbMATHGoogle Scholar
  352. Petrenko, V.P. (1969): Study of the structure of the set of positive deviations of meromorphic functions, I. Izv. Akad. Nauk SSSR, Ser. Mat. 33, No.6, 1330–1348, Zbl. 195, 88. Engl. transi.: Math. USSR, Izv. 3, 1251–1270 (1969)Google Scholar
  353. Petrenko, V.P. (1970): same title, II. Izv. Akad. Nauk SSSR, Ser. Mat. 34, No.1, 31–56, Zbl. 195, 88. Engl. transi.: Math. USSR, Izv. 4, 31–57 (1970)MathSciNetGoogle Scholar
  354. Petrenko, V.P. (1978): Growth of Meromorphic Functions. Kharkov, Vyshcha Shkola, 136 pp. ( Russian ), Zbl. 448. 30003Google Scholar
  355. Petrenko, V.P. (1984): Entire curves. Kharkov, Vyshcha Shkola, 136 pp. (Russian), Zbl. 591.30030 Picard, E. (1880): Sur une proprieté des fonctions uniformes d’une variable et sur une classe d’equations différentelles. C. R. Acad. Sci. Paris 91, 1058–1061, Jbuch 12, 326Google Scholar
  356. Podoshev, L.R. (1985): On summing of indicators, and on Fourier coefficients of the logarithm of the modulus of an entire function. Teor. Funkts., Funkts. Anal. Prilozh. 43, 100–107, Zbl. 582.30018. Engl. transi.: J. Soy. Math. 48, No. 2, 203–209 (1990)MathSciNetGoogle Scholar
  357. Podoshev, L.R. (1986): Necessary and sufficient conditions for the existence of an entire function with a given indicator and lower indicator. Rostov-on-the-Don, Rostov University, 102 pp. (MS deposited at VINITI 06. 19.86 No.4519-B) (Russian)Google Scholar
  358. Podoshev, L.R. (1991): Some conditions of completely regular growth of a function subharmonic in. Operator theory, subharmonic functions. Kiev, Naukova Dumka, 85–95 ( Russian ), Zbl. 792. 31004Google Scholar
  359. Podoshev, L.R. (1992): Complete description of the pair indicator-lower indicator of an entire function. Adv. Soy. Mat. 11, 75–106, Zbl. 772. 30027Google Scholar
  360. Pôlya, G. (1974): Collected Papers, v. I. Cambridge, Mass. and London, MIT Press, 808 pp., Zbl. 319. 01201Google Scholar
  361. Poritsky, H. (1932): On certain polynomial and other approximations to analytic functions. Trans. Am. Math. Soc. 34, No.2, 274–331, Zbl. 4, 343Google Scholar
  362. Pöschl, K. (1958): Uber Anwachsen und Nullstellenverteilung der ganzen transzendenten Lösungen linearer Differentialgleichungen. I, II, J. reine angew. Math. 199, 121–138; 200, 129–138; I Zbl. 82, 71; II Zbl. 83, 310Google Scholar
  363. Rafaelyan, S.G. (1983): Interpolation and bases in weight classes of entire functions of exponential type. Izv. Akad. Nauk Arm.SSR, Mat. 18, No.3, 167–186, Zbl. 527.30024. Engl. transi.: Soy. J. Contemp. Math. Anal., Arm. Acad. Sci. 18, No. 3, 1–210 (1983)MathSciNetzbMATHGoogle Scholar
  364. Podoshev, L.R. (1984): Bases of some orthogonal systems in L 2 (-v, v). Izv. Akad. Nauk Arm.SSR, Mat. 19, No.3, 207–218 (Russian), Zbl. 558.30030. Engl. transi.: Soy. J. Contemp. Math. Anal., Arm. Acad. Sci. 19, No. 3, 21–32 (1984)Google Scholar
  365. Rogozin, S.V. (1985): Boundary problems and special integral equations with the infinite index. Scientific Works of the Jubilee Seminar on Boundary Problems, Collect. Articles, Minsk, University Press, 95–103 ( Russian ), Zbl. 625. 30041Google Scholar
  366. Ronkin, L.I. (1953): On approximation of entire functions by trigonometric polynomials. Dokl. Akad. Nauk SSSR 92, No.5, 887–890 ( Russian ), Zbl. 52, 59Google Scholar
  367. Ronkin, L.I. (1991): Limit sets of analytic and subharmonic functions in a half-plane. Ukr. Mat.Zh. 43, No.2, 247–261 (Russian), Zbl. 734.31003. Engl. transl.: Ukr. Math. J. 43,No. 2, 218–231 (1991)MathSciNetzbMATHGoogle Scholar
  368. Ronkin, L.I. (1995): Limit set of a function subharmonic in a cone. Ukr. Mat. Zh. (in print) (Russian)Google Scholar
  369. Rosenbloom, P.C. (1962): Probability and entire functions. Stud. Math. Anal. and related Topics, Stanford, Univ. Press, 325–332, Zbl. 112, 301Google Scholar
  370. Rossi, J. (1986): Second order differential equations with transcendental coefficients. Proc. Am. Math. Soc. 97, No.1, 61–66, Zbl. 596. 30047Google Scholar
  371. Rossi, J., Weitsman, A. (1983): A unified approach to certain questions in value distribution theory. J. Lond. Math. Soc. 28, 310–326, Zbl. 512. 30018Google Scholar
  372. Rubel, L.A., Taylor, B.A. (1968): A Fourier series method for meromorphic and entire functions. Bull. Soc. Math. Fr. 96, No.1, 53–96, Zbl. 157, 396Google Scholar
  373. Russakovskij, A.M. (1982): On interpolation in the class of entire functions with the indicator not exceeding a given one, I. Teor. Funkts., Funkts. Anal Prilozh. 37, 111–114 ( Russian ), Zbl. 518. 30035Google Scholar
  374. Russakovskij, A.M. (1984): same title, II. Teor. Funkts., Funkts. Anal. Prilozh. 41, 119–122 ( Russian ), Zbl. 599. 30062Google Scholar
  375. Savchuk, Ya.I. (1983): On the set of deficient vectors of entire curves. Ukr. Mat. Zh. 35, No.3, 385–389, Zbl. 518.30030. Engl. transi.: Ukr. Math. J. 35, 334–338 (1983)MathSciNetzbMATHGoogle Scholar
  376. Savchuk, Ya.I. (1985a): Structure of the set of deficiency vectors of entire and analytic curves of finite order. Ukr. Mat. Zh. 37, No.5, 609–615, Zbl. 591.30026. Engl. transl Ukr. Math. J. 37, 494–499 (1985)Google Scholar
  377. Savchuk, Ya.I. (1985b): To the inverse problem of the theory of value distribution of entire and analytic curves. Teor. Funkts., Funkts. Anal. Prilozh. 43, 119–132, Zbl. 583.32062. Engl. transi.: J. Sov. Math. 48, No. 2, 220–231 (1990)MathSciNetGoogle Scholar
  378. Schaeffer, A.C. (1953): Entire functions and trigonometric polynomials. Duke Math. J. 20, 77–88, Zbl. 52, 79Google Scholar
  379. Schmidli, S. (1942): Uber gewisse Interpolationsreihen. Thesis, Eidgenössische Technische Hochschule in Zürich, Zbl. 27, 215Google Scholar
  380. Schoenberg, I.J. (1936): On the zeros of successive derivatives of integral functions. Trans. Am. Math. Soc. 40, No.1, 12–23, Zbl. 14, 319Google Scholar
  381. Selberg, H. (1928): Uber einige Eigenschaften bei der Wertverteilung der meromorpher Funktionen endlicher Ordnung. Avh. Norske Videns. Acad. i Oslo, I. Matem.-Naturvid. Kl., No.7, 17 pp., Jbuch 54, 350Google Scholar
  382. Seneta, E. (1976): Regularly varying functions. Lect. Notes Math. 508, 112 pp., Zbl. 324. 26002Google Scholar
  383. Sergienko, E.N. (1974): On the growth of meromorphic functions admitting a special estimate from below. Teor. Funkts., Funkts. Anal. Prilozh. 21, 83–104, ( Russian ), Zbl. 309. 30026Google Scholar
  384. Sergienko, E.N. (1982): On the growth of functions representable as a difference of subharmonic functions and admitting a special estimate from below. Teor. Funkts., Funkts. Anal. Prilozh. 37, 116–122 ( Russian ), Zbl. 514. 30023Google Scholar
  385. Shchuchinskaya, E.F. (1976): On exceptional values in the Wiman theorem (MS deposited at VINITI, No.650–77 Dep., 26 pp.) (Russian)Google Scholar
  386. Shea, D.F. (1966): On the Valiron deficiencies of meromorphic functions of finite order. Trans. Am. Math. Soc. 124, No.2, 201–227, Zbl. 158, 71Google Scholar
  387. Sheremeta, M.N. (1967): On the relation between the growth of the maximum modulus of an entire function and of coefficient moduli in its power expansion. Izv. Vyssh. Uchebn. Zaved., Mat. 1967, 2(57), 100–108, Zbl. 165, 85. Engl. transi.: Transl., II. Ser., Am. Math. Soc. 88, 291–301 (1970)Google Scholar
  388. Sheremeta, M.N. (1968): On the relation between the growth of entire or analytic in the disk functions of zero order and coefficients of their power expansions. Izv. Vyssch. Uchebn. Zaved., Mat. 1968, No.6, 115–121 ( Russian ), Zbl. 183, 340Google Scholar
  389. Sheremeta, M.N. (1972): On coefficients of power expansions of entire functions, I. Teor. Funkts., Funkts. Anal. Prilozh. 16, 41–44, (Russian) Zbl. 249. 30021Google Scholar
  390. Sheremeta, M.N. (1973): same title, II. Teor. Funkts., Funkts. Anal. Prilozh. 17, 64–71, (Russian) Zbl. 284. 30014Google Scholar
  391. Sheremeta, M.N. (1978a): The Wiman-Valiron method for entire functions given by Dirichlet series. Dokl. Akad. Nauk SSSR 238, No.6, 1307–1309, Zbl. 401.30020. Engl. transi.: Soy. Math., Dokl. 19, 234–237 (1978)zbMATHGoogle Scholar
  392. Sheremeta, M.N. (1978b): The Wiman-Valiron method for Dirichlet series. Ukr. Mat. Zh. 30, No.4, 488–497, Zbl. 384.30010. Engl. transl.: Ukr. Math. J. 30, 376–383 (1978)MathSciNetzbMATHGoogle Scholar
  393. Sheremeta, M.N. (1979a): Asymptotic properties of entire functions which are given by Dirichlet series and their derivatives. Ukr. Mat. Zh. 31, No.6, 723–730, Zbl. 426.30024. Engl. transi.: Ukr. Math. J. 31, 558–564 (1980)zbMATHGoogle Scholar
  394. Sheremeta, M.N. (1979b): Analogs of the Wiman theorem for Dirichlet series. Mat. Sb., Nov. Ser. 110, No.1, 102–116, Zbl. 432.30021. Engl. transi.: Math. USSR, Sb. 38, 95–107 (1981)zbMATHGoogle Scholar
  395. Sheremeta, M.N. (1980): On the growth inside an angle of entire functions given by lacunary power series. Sib. Mat. Zh. 21, No.3, 197–208, Zbl. 438.30027. Engl. transi.: Sib. Math. J. 21, 460469 (1981)Google Scholar
  396. Sheremeta, M.N. (1983): On the convergence rate of partial sums of an entire Dirichlet series. Teor. Funkts., Funkts. Anal. Prilozh. 40, 141–145 ( Russian ), Zbl. 555. 30003Google Scholar
  397. Shimizu, T. (1929a): On the theory of meromorphic functions. Jap. J. Math. 6, No.1, 119–171, Jbuch 55, 196Google Scholar
  398. Shimizu, T. (1929b): Remarks on a proof of Picard’s general theorem and allied theorems. Jap. J. Math. 6, No.3, 315–318, Jbuch 56, 975Google Scholar
  399. Sibuya, Y. (1975): Subdominant solutions admitting a prescribed Stokes phenomenon. Proc. Int. Conf. Diff. Equat., Los Angeles, 1974, 709–738, Zbl. 329.34010 Sigurdsson, R. (1986): Growth properties of analytic and plurisubharmonic functions of finite order. Math. Scand. 59, 235–304, Zbl. 619. 32003Google Scholar
  400. Sibuya, Y. (1991): Convolution equations in domain of C’’1. Ark. Math. 29, No.2, 285–305, Zbl. 794. 32004Google Scholar
  401. Skaskiv, O.B. (1985): On the behavior of the maximum term of the Dirichlet series representing an entire function. Mat. Zametki 37, No.1, 41–47, Zbl. 568.30022. Engl. transl.: Math. Notes 37, 24–28 (1985)MathSciNetzbMATHGoogle Scholar
  402. Skaskiv, O.B. (1986): Generalization of the small Picard theorem. Teor. Funkts., Funkts. Anal. Prilozh. 46, 90–100, Zbl. 604.30001. Engl. transl.: J. Sov. Math. 48, No. 5, 570–578 (1990)MathSciNetzbMATHGoogle Scholar
  403. Sodin, M.L. (1983a): On the growth of entire functions of finite low order in the LP metric. Kharkov Institute of Radio Electronics, Kharkov, 20 pp. (MS deposited at UkrNIINTI 06.02.83, No.420 Uk-D83) (Russian)Google Scholar
  404. Sodin, M.L. (1983b): A remark on limit sets of subharmonic functions of integer order. Teor. Funkts., Funkts. Anal. Prilozh. 39, 125–129 (Russian), Zbl. 561.31002 Kharkov, No. 39, 125–129 (Russian)Google Scholar
  405. Sodin, M.L. (1985): The asymptotic modulus of continuity of subharmonic of finite order functions. Ukr. Mat. Zh. 37, No.3, 380–384, Zbl. 616.31001. Engl. transl.: Ukr. Math. J. 37, 303–307 (1985)MathSciNetzbMATHGoogle Scholar
  406. Sodin, M.L. (1986): Some results on the growth of meromorphic functions of finite lower order. Mat. Fiz., Funkts. Analiz (Kiev), 102–113 ( Russian ), Zbl. 673. 30020Google Scholar
  407. Sons, L.R. (1970): An analogue of a theorem of W. H. J. Fuchs on gap series. Proc. Lond. Math. Soc., III. Ser. 21, No.3, 525–539, Zbl. 206, 88Google Scholar
  408. Steinmetz, N. (1982a): Uber die eindeutigen Lösungen einer homogenen algebraischen Differentialgleichung zweiter Ordnung. Ann. Acad. Sci. Fenn., Ser. AI 7, 177–188, Zbl. 565. 34005Google Scholar
  409. Steinmetz, N. (1982b): Zur Wertverteilung der Lösungen der vierten Painlevéschen Differentialgleichung. Math. Z. 181, 553–561, Zbl. 528. 30019Google Scholar
  410. Steinmetz, N. (1986): Ein Malmquistscher Satz für algebraische Differentialgleichungen zweiter Ordnung. Res. Math. 10, 152–167, Zbl. 652. 34007Google Scholar
  411. Steinmetz, N. (1986): Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes. J. Reine und Angew. Math. 368, 134–141, Zbl. 598. 30045Google Scholar
  412. Stoilow, S. (1958): Teoria functiilor de o variabilâ complexa, v.2.Bucuresti, Ed. RPR, 378 pp. ( Romanian ), Zbl. 102, 291Google Scholar
  413. Strelits, Sh.I. (1960): The Wiman-Valiron theorem for entire functions of several variables. Dokl. Akad. Nauk SSSR 134, No.2, 286–288, Zbl. 158, 328. Engl. transi.: Sov. Math., Dokl. 1, 1075–1077 (1960)zbMATHGoogle Scholar
  414. Strelits, Sh.I. (1972): Asymptotic Properties of Analytic Solutions of Differential Equations. Vilnius, Mintis, 467pp. ( Russian ), Zbl. 252. 34005Google Scholar
  415. Subbotin, M.F. (1916): On determination of singular points of an analytic function. Mat. Sb. 30, No.3, 402–433 ( Russian ), Jbuch 48, 1376Google Scholar
  416. Subbotin, M.F. (1931): Sur les propriétés-limités du module des fonctions entières d’ordre fini. Math. Ann. 104, 377–386, Zbl. 1, 146Google Scholar
  417. Sung Chen-Han (1979): Defect relations of holomorphic curves and their associated curves in CPS`. Lect. Notes Math. 747, 398–404, Zbl. 423. 30017Google Scholar
  418. Takenaka, S. (1932): On the expansion of integral transcendental functions in generalized Taylor’s series. Proc. Phys.-Math. Soc. Jap., III. Ser. 14, 529–542, Zbl. 6, 63Google Scholar
  419. Toda, N. (1970): Sur les combinaisons exceptionelles de fonctions holomorphes; applications aux fonctions algébroides. Tohoku Math. J., II. Ser. 22, No.2, 290–319, Zbl. 202, 70Google Scholar
  420. Toda, N. (1975): Sur quelques combinaisons linéaires exceptionelles au sens de Nevanlinna, III. Kodai Math. Sem. Reports 26, 294–303, Zbl. 371. 30029Google Scholar
  421. Toppila, S. (1970): Some remarks on exceptional values at Julia lines. Ann Acad. Sci. Fenn., Ser. AI No.456, 1–20, Zbl. 207, 373Google Scholar
  422. Toppila, S. (1977): On Nelanlinna’s characteristic function of entire functions and their derivatives. Ann. Acad. Fenn., Ser. AI 3, 131–134, Zbl. 374. 30023Google Scholar
  423. Toppila, S. (1980): On the length of asymptotic paths of entire functions of order zero. Ann. Acad. Sci. Fenn., Ser. AI 5, 13–15, Zbl. 444. 30018Google Scholar
  424. Toppila, S. (1982): On the characteristic of meromorphic functions and their derivatives. J. Lond. Math. Soc., II. Ser., 25, 261–272, Zbl. 488. 30021Google Scholar
  425. Toppila, S. (1983): An introduction to Nevanlinna theory. Lect. Notes Math. 981, 1–12, Zbl. 502. 30026Google Scholar
  426. Turan, P. (1953): Über eine neue Methode der Analysis und deren Anwendungen. Budapest, Akademiai Kiado, 195 pp., Zbl. 52, 46Google Scholar
  427. Ushakova, I.V. (1970): Asymptotic estimates of a difference of subharmonic functions in a plane. Vestn. Kharkov Univ., Ser. Mekh.-Mat. 34, 70–81 ( Russian ), Zbl. 243. 31001Google Scholar
  428. Valiron, G. (1914): Sur les fonctions entiéres d’ordre nul et d’ordre fini et en particulier les fonctions à correspondance régulière. Ann. Fac. Sci. Univ. Toulouse 5, 117–257, Jbuch 46, 1462Google Scholar
  429. Valiron, G. (1923): Lectures on the general theory of integral functions. Toulouse, E. Privat, 208 pp., Jbuch 50, 254 ( W. H. Bull Cambridge 1923 )Google Scholar
  430. Valiron, G. (1925): Sur la formule d’interpolation de Lagrange. Bull. Sci. Math. 49, p.1, 181–192, 203–224, Jbuch 51, 250Google Scholar
  431. Valiron, G. (1938): Directions de Borel des fonctions méromorphes. Mém. Sci. Math. Fasc. 89, Paris, Gauthier-Villars, 70 pp., Zbl. 18, 73Google Scholar
  432. Valiron, G. (1954): Fonctions analytiques. Paris, Presses Univ. France, 235 pp., Zbl. 55, 67 Varga, R.S. (1982): Topics in polynomial and rational interpolation and approximation. Monréal, Presses de l’Université de Monréal, 120 pp., Zbl. 484. 30023Google Scholar
  433. Vinogradov, S.A. (1976): Bases formed by exponential functions and free interpolation in Banach spaces with a LP-norm. Zap. Nauchn. LOMI 65, 17–68 ( Russian ), Zbl. 345. 46029Google Scholar
  434. Vishnyakova, A.M. (1990): Growth of ridge functions non vanishing in an angular domain. Analyticheskije Metody v Teorii Verojatnostej i Teorii Operatorov. Kiev, Naukova Dumka, 40–48 (Russian)Google Scholar
  435. Vishnyakova, A.M. Ostrovskii, I.V., Ulanovskij, A.M. (1990): On a conjecture of Yu.V.Linnik. Algebra Anal. 2, No. 4, 82–90. Engl. transi.: Leningr. Math. J. 2, 765–773 (1991)Google Scholar
  436. Weitsman, A. (1972): Theorem on Nevanlinna deficiencies. Acta Math. 128, No.1–2, 41–52, Zbl. 229. 30028Google Scholar
  437. Whittaker, E.T. (1915): On the functions which are represented by the expansions of the interpolation theory. Proc. R. Soc. Edinb. 35, 181–194, Jbuch 45, 1275Google Scholar
  438. Whittaker, J.M. (1935): Interpolatory function theory. Cambridge, Cambridge Univ. Press, 107 pp., Zbl. 12, 155Google Scholar
  439. Wille, R.J. (1957): On the integration of Ahlfors’ inequality concerning covering surfaces. Nederl. Akad. Wet., Proc., Ser. A 60, No. 1, 108–111, Zbl. 78, 68 (= Truing- Math.; 1957; 19 ; No 1, 10R-111)Google Scholar
  440. Wittich, H. (1955): Neuere Untersuchungen über eindeutige analytische Funktionen. Berlin-Göttingen-Heidelberg, Springer-Verlag, 164 pp., Zbl. 67, 55Google Scholar
  441. Wu Hung-Hsi (1970): The equidistribution theory of holomorphic curves. Ann. Math. Studies., 219 pp., Zbl. 199, 409Google Scholar
  442. Xing Yang (1993): Regular growth of subharmonic functions of several variables. Math. Scand. 72, No.2, 229–245, Zbl. 813. 31002Google Scholar
  443. Yang Lo ( Yang Le) (1979): Common Borel directions of meromorphic functions and their derivatives. Sci. Sin., spec. issue II, 91–104Google Scholar
  444. Yang Lo (1991): Precise fundamental inequalities and sum of deficiencies. Sci China, 34, No.2, 157–165, Zbl. 741. 30026Google Scholar
  445. Yang Lo, Chang Kuan-heo (1975): Recherches sur le nombre des valeurs deficientes et le nombre des directions de Borel des fonctions méromorphes. Sci. Sin. 18, No.1, 23–37, Zbl. 326. 30023Google Scholar
  446. Yang Lo (1976): Sur la construction des fonctions méromorphes ayant des directions singulieres données. Sci. Sin. 19, No.4, 445–459, Zbl. 338. 30022Google Scholar
  447. Yang Lo, Zhang Guanghou (1973): Sur la distribution des directions de Borel des fonctions méromorphes. Sci. Sin. 16, 465–482, Zbl. 338. 30021Google Scholar
  448. Yang Lo, Zhang Guanghou (1976): Distribution of Borel directions of entire functions. Acta Math. Sin. 19, 157–168, Zbl. 338. 30026Google Scholar
  449. Yang Lo, Zhang Guanghou (1982): A general theorem on total numbers of deficient values of entire functions. Acta Math. Sin. 25, 244–247, Zbl. 489. 30026Google Scholar
  450. Yulmukhametov, R.S. (1982): Asymptotic approximation of subharmonic functions. Dokl. Akad. Nauk SSSR 264, 839–841, Zbl. 511.30029. Engl. transl.: Sov. Math., Dokl. 25, 769–771 (1982)zbMATHGoogle Scholar
  451. Yulmukhametov, R.S. (1985): Approximation of subharmonic functions. Anal. Math. 11, No.3, 257–282, Zbl. 594. 31005Google Scholar
  452. Yulmukhametov, R.S. (1987): Approximation of homogeneous subharmonic functions. Mat. Sb., Nov. Ser. 134, No.4, 511–529, Zbl. 665, 31002. Engl. transl.: Math. USSR, Sb. 62, 507523 (1987)Google Scholar
  453. Zhang Guanghou (= Chang, Kuan-Heo) (1977a): Research on common Borel directions of a meromorphic function and of its succesive derivatives and integrals. I, II, III. Acta Math.Sin. 20, 73–98, 157–177, 237–247, Zbl. 357.30020/21, Zbl. 371. 30028Google Scholar
  454. Zhang Guanghou (1977b): Asymptotic values of entire and meromorphic functions. Sci. Sin. 20, No.6, 720–739, Zbl. 379. 30013Google Scholar
  455. Zhang Guanghou (1978): On relations between deficient values, asymptotic values and Julia directions of entire and meromorphic functions. Sci. Sin. Suppl. 1, 1–80, Zbl. 395. 30022Google Scholar
  456. Zhang Guanghou (1983): On entire functions extremal for Denjoy conjecture. II. Sci. Sin., Ser. A. 26, No.4, 337–349, Zbl. 518. 30027Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

There are no affiliations available

Personalised recommendations