Skip to main content

Impact on Marine Ecosystems

  • Conference paper
Solar Ultraviolet Radiation

Part of the book series: NATO ASI Series ((ASII,volume 52))

Abstract

Aquatic ecosystems are responsible for about 50% of the biomass productivity on our planet (Houghton and Woodwell, 1989; Siegenthaler and Sarmiento, 1993). The major share is represented by marine systems since freshwater habitats occupy only about 0.5% of the total water surface. The latter should not be neglected, however, since they may be of local importance and can also serve as valuable model systems as shown in a recent review volume (Williamson and Zagarese, 1995). The main primary producers of biomass in aquatic ecosystems are phytoplankton which are artificially subdivided into size classes: macroplankton (>100 μm), microplankton (70–100 μm). nanoplankton (5–70 μm) and ultraplankton (<5 μm). The organisms belong to almost all major groups of algae. With a few exceptions macroalgae are sessile and thus restricted to coastal areas. Despite of this they have their share in the primary productivity and are of commercial value since several million tons of seaweed are harvested each year for the production of food and colloids. The primary producers form the basis of the intricate food web in marine ecosystems on which almost all primary and secondary consumers depend for food. Another important component ill the aquatic ecosystems is the bacterioplankton which are responsible for degradation and mineralization of organic matter: the organic matter bound in bacterioplankton may amount to as much as 40% (Herndl et al., 1993). Recent studies have also revealed large populations of viral particles (l07 per ml) in the oceans, the significance of which is unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, K. S. and Smith, R. C., 1982. Spectral irradiance penetration in natural waters, in: “The Role of Solar Ultraviolet Radiation in Marine Ecosystems,” Calkins, J., ed., Plenum Press, New York, p. 233.

    Google Scholar 

  • Bean, B., 1985, Microbial geotaxis, in: “Membranes and Sensory Transduction,” Colombetti, G. and Lenci, F., eds., Plenum Press, New York, p. 163.

    Google Scholar 

  • Beggs, C. J. and Wellmann, E. (1985). Analysis of light-controlled anthocyanin formation in coleoptiles of Zea mays L.: the role of UV-B, blue, red and far-red light. Photochem. Photohiol., 41, 481–486.

    Article  CAS  Google Scholar 

  • Beggs, C. J., Schneider-Ziebert, U. and Wellmann, E. (1986). UV-B radiation and adaptive mechanisms in plants. In: Worrest, R. C. and Caldwell, M. M. (eds.,) Stratospheric ozone reduction. Solar ultraviolet radiation and plant life. NATO ASI Series. Vol. G8, 235–250 Springer, Heidelberg.

    Chapter  Google Scholar 

  • Burns, N. M. and Rosa, F., 1980, In situ measurements of the settling velocity of organic carbon particles and ten species of phytoplankton. Limnol. Oceanogr. 2: 855.

    Google Scholar 

  • Carreto, J. J., Carignana, M. O., Daleo, G. and de Marco. S. G. (1990). Occurrence of mycosporine-like amino acids in the red tide dinoflagellate Alexandrium excavatum. UV-photoprotective compounds. J. Plankton Res., 12: 909–921.

    Article  CAS  Google Scholar 

  • Cullen, J.J. and Lesser, M.P., 1991, Inhibition of photosynthesis by ultraviolet radiation as a function of dose and dosage rate: results for a marine diatom, Marine Biol. 111: 183–190.

    Article  Google Scholar 

  • Döhler, G., 1985, Effect of UV-B radiation (290–320 nm) on the nitrogen metabolism of several marine diatoms, J. Plant Physiol. 118: 391.

    Article  Google Scholar 

  • Döhler, G., Biermann, I.. and Zink, J., 1986, Impact of UV-B radiation on photosynthetic assimilation of 14C-bicarbonate and inorganic 15N-compounds by cyanobacteria, Z. Naturforsch. 41c: 426.

    Google Scholar 

  • Döhler, G., Worrest, R. C., Biermann, I. and Zink, J., 1987, Photosynthetic 14CO2 fixation and 15N-ammonia assimilation during UV-B radiation of Lithodesmium variabile, Physiol. Plantarum 70: 511.

    Google Scholar 

  • Dubinsky, Z., Falkowski, P. G., Post, A. F., and van Hes, U. M., 1987, A system for measuring phytoplankton photosynthesis in a defined light field with an oxygen electrode, J. Plankton Res. 9: 607.

    Article  Google Scholar 

  • Eggersdorfer, B. and Häder, D.-P., 1991a, Phototaxis, gravitaxis and vertical migrations in the marine dinoflagellate, Prorocentrum mitans, Eur. J. Biophys. 85: 319

    Google Scholar 

  • Eggersdorfer, B. and Häder, D.-P., 199 lb, Phototaxis, gravitaxis and vertical migrations in the marine dinoflagellates, Peridinium faeroense and Amphidinium caterii, Acta Protozool. 30: 63.

    Google Scholar 

  • Ehrendorfer, F., 1991, Geobotanik, in: “Lehrbuch der Botanik fir Hochschulen,”

    Google Scholar 

  • Strasburger, E., ed., 33. Aufl., G. Fischer, Stuttgart, Jena, New York, p.892. Ekelund, N. and Häder, D.-P., 1988, Photomovement and photobleaching in two Gyrodinium species, Plant Cell Physiol. 29:1109.

    Google Scholar 

  • Estrada, M., Alcataz, M., and Marrasé, 1987, Effect of reversed light gradients on the phytoplankton composition in marine microcosms, Inv. Pesq. 51: 443.

    Google Scholar 

  • Garcia-Pichel, F., 1995, A scalar irradiance fiber-optic microprobe for the measurement of ultraviolet radiation at high spatial resolution, Photochem. Photobiol. 61, 248–254.

    Google Scholar 

  • Garcia-Pichel, F., Sherry, N.D. and Castenholz, R.W., 1992, Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem. Photobiol. 56: 17–23.

    Google Scholar 

  • Gerber, S. and Häder, D.-P., 1992, UV effects on photosynthesis, proteins and pigmentation in the flagellate Euglena gracilis: biochemical and spectroscopic observations. Biochem. System. Ecol. 20: 485–492.

    Google Scholar 

  • Gerber, S. and Häder, D.-P., 1993, Effects of solar irradiation on motility and pigmentation of three species of phytoplankton, Env. Exp. Biol. 33: 515.

    Google Scholar 

  • Gerber, S. and Häder, D.-P., 1994, Effects of enhanced UV-B irradiation on the red coloured freshwater flagellate Euglena sanguinea, FEMS Microbiol. Ecol. 13: 177.

    Google Scholar 

  • Gieskes, W. C. and Kraay, G. W., 1990, Transmission of ultraviolet light in the Weddell Sea. Report on the first measurements made in Antarctic, Biomass Newsletter 12: 12.

    Google Scholar 

  • Häberlein, A. and Häder, D.-P., 1992. UV effects on photosynthetic oxygen production and chromoprotein composition in the freshwater flagellate Crvptoinonas S2. Acta Protozool. 31: 85.

    Google Scholar 

  • Häder, D.-P.: Effects of UV-B on motility and photobehavior in the green flagellate, Euglena gracilis, Arch. Microbiol. 141, 159–163 (1985).

    Google Scholar 

  • Hader, D.-P.. 1986a, The effect of enhanced solar UV-B radiation on motile microorganisms, in: “Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life,” Worrest, R. C. and Caldwell, M. M, eds., Springer Verlag, Berlin, Heidelberg, New York, p. 223–233.

    Google Scholar 

  • Hader, D.-P., 1986b, Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate, Euglena gracilis, Photochem. Photobiol. 44:651–656. Häder, D.-P., 1987, Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis, Arch. Microbiol. 147: 179.

    Google Scholar 

  • Hader, D.-P.. 1988a, Ecological consequences of photomovement in microorganisms, J. Photochem. Photobiol. B: Biol. 1: 385–414.

    Google Scholar 

  • Hader, D.-P.. 1988b, Computer-assisted image analysis in biological sciences, Proc. Indian Acad. Sci. ( Plant Sci. ) 98: 227–249.

    Google Scholar 

  • Hader, D.-P., 1989, Einfluß von UV-B-Strahlung auf die Photoorientierung von Flagellaten, Laufener Sem. Beitr. 3: 67–73.

    Google Scholar 

  • Hader, D.-P., 1991a, Use of image analysis in photobiology, in: “Photobiology. The Science and its Applications,” Riklis, E., ed., Plenum Press, New York and London, p. 329.

    Google Scholar 

  • Hader, D.-P., 199 lb, Phototaxis and gravitaxis in Euglena gracilis, in: “Biophysics of Photoreceptors and Photomovements in Microorganisms,” Lenci, F., Ghetti, F., Colombetti, G., Hader, D.-P. and Song, P.-S.,eds., Plenum Press, New York and London, p. 203–221.

    Google Scholar 

  • Häder, D.-P., 1991c, Effects of enhanced solar ultraviolet radiationon aquatic ecosystems., in: “Biophysics of Photoreceptors and Photomovements in Microorganisms,” Lenci, F., Ghetti, F., Colombetti, G., Hader, D.-P. and Song, P.S.,eds., Plenum Press, New York and London, p. 157–172.

    Book  Google Scholar 

  • Hader, D.-P., 1993a, Risks of enhanced solar ultraviolet radiation for aquatic ecosystems, in: “Progress in Phycological Research,” Round, F.E. and Chapman, D.J., eds.. vol. 9, p. 1.

    Google Scholar 

  • Hader, D.-P., 1993b, Effects of enhanced solar ultraviolet radiation on aquatic ecosystems, in: “UV-B radiation and ozone depletion. Effects on humans, animals, plants, microorganisms, and materials,” Tevini, M., ed., Lewis Publ., Boca Raton, Ann Arbor, London, Tokyo, p. 155.

    Google Scholar 

  • Hader, D.-P., 1995, Vertical distribution of marine phytoplankton in the water column, Env. Exp. Bot., in press.

    Google Scholar 

  • Häder, D.-P., Colombetti, G., Lenci, F. and Quaglia, M., 1981, Phototaxis in the flagellates, Euglena gracilis and Ochromonas danica, Arch. Microbiol. 130: 78–82.

    Google Scholar 

  • Hader, D.-P. and Griebenow, K., 1987, Versatile digital image analysis by microcomputer to count microorganisms, EDV Med. Biol. 18: 37.

    Google Scholar 

  • Hader, D.-P. and Hader, M., 1988a, Ultraviolet-B inhibition of motility in green and dark bleached Euglena gracilis, Current Microbiol. 17: 215.

    Article  Google Scholar 

  • Hader, D.-P. and Hader, M., 1988b, Inhibition of motility and phototaxis in the green flagellate, Euglena gracilis, by UV-B radiation, Arch. Microbiol. 150: 20.

    Google Scholar 

  • Häder, D.-P. and Hader, M., 1989a, Effects of solar radiation on photoorientation, motility and pigmentation in a freshwater Cryptomonas, Botanica Acta 102: 236240.

    Google Scholar 

  • Häder, D.-P. and Häder, M. A., 1989b, Effects of solar and artificial radiation on motility and pigmentation in Çvanophora paradoxa, Arch. Microbiol. 152: 453457.

    Google Scholar 

  • Häder, D.-P. and Häder, M. A., 1989c, Effects of solar UV-B irradiation on photomovement and motility in photosynthetic and colorless flagellates, Environ. Exp. Bot. 29: 273–282.

    Google Scholar 

  • Häder, D.-P. and Häder, M., 1990, Effects of UV radiation on motility, photo-orientation and pigmentation in a freshwater Cryptomonas, J. Photochem. Photobiol. B: Biol. 5: 105.

    Google Scholar 

  • Häder, D.-P. and Häder, M., 1991, Effects of solar and artificial UV radiation on motility and pigmentation in the marine Cryptomonas maculata, Env. Exp. Bot. 31: 33.

    Google Scholar 

  • Häder, D.-P., Häder, M., Liu, S.-M. and Ullrich, W., 1990a, Effects of solar radiation on photoorientation, motility and pigmentation in a freshwater Peridinium, BioSystems 23: 335–343.

    Article  Google Scholar 

  • Häder, D.-P., Herrmann, H. and Santas, R., 1995, Effects of solar irradiation on photosynthetic oxygen production and PAM fluorescence in the brown alga Padina pavonia,FEMS, in press.

    Google Scholar 

  • Häder, D.-P. and Liu, S.-M., 1990, Motility and gravitactic orientation of the flagellate, Euglena gracilis, impaired by artificial and solar UV-B radiation, Curr. Microbiol. 21: 161.

    Google Scholar 

  • Häder, D.-P., Liu, S.-M., Häder, M. and Ullrich, W., 1990b, Photoorientation, motility and pigmentation in a freshwater Peridinium affected by ultraviolet radiation, Gen. Physiol. Biophys. 9: 361–371.

    Google Scholar 

  • Häder, D.-P., Rhiel, E. and Wehrmeyer, W., 1988, Ecological consequences of photomovement and photobleaching in the marine flagellate Cryptomonas maculata, FEMS Microbiol. Ecol. 53: 9.

    Google Scholar 

  • Häder, D.-P. and Schäfer, J., 1994a, Photosynthetic oxygen production in macroalgae and phytoplankton under solar irradiation, J. Plant Physiol. 144: 293299.

    Google Scholar 

  • Häder, D.-P. and Schäfer, J., 1994b, In-situ measurement of photosynthetic oxygen production in the water column, Environm. Monitor. Assessm. 32: 259–268.

    Google Scholar 

  • Häder, D.-P. and Vogel, K., 1991, Simultaneous tracking of flagellates in real time by image analysis, J. Math. Biol. 30: 63.

    Google Scholar 

  • Häder, D.-P. and Vogel, K., 1992, Real time tracking of microorganisms, in: “Image

    Google Scholar 

  • Analysis in Biology,“ Häder, D.-P., ed., CRC Press, Boca Raton, pp. 289–313. Häder, D.-P., Vogel, K. and Schäfer, J., 1990, Responses of the photosynthetic flagellate, Euglena gracilis,to microgravity, Microgravity sci.technol. III, 110. Häder, D.-P., Worrest, R. C. and Kumar, H. D., 1989, Aquatic ecosystems, UNEP Environmental Effects Panel Report, 39.

    Google Scholar 

  • Häder, D.-P., Worrest, R. C. and Kumar, H. D., 1991, Aquatic ecosystems, UNEP Environmental Effects Panel Report, 33.

    Google Scholar 

  • Häder, D.-P., Worrest, R. C., Kumar, H. D., and Smith, R. C., 1995b, Effects of increased solar ultraviolet radiation on aquatic ecosystems, Ambio 24: 174–180.

    Google Scholar 

  • Hanelt, D.. 1992, Photoinhibition of photosynthesis in marine macrophytes of the South China sea, Mar. Ecol. Progr. Ser. 82: 199.

    Google Scholar 

  • Hanelt, D., Hupperts, K., and Nultsch, W., 1992, Photoinhibition of photosynthesis and its recovery in red algae, Bot. Acta 105: 278.

    Google Scholar 

  • Hanelt, D., Hupperts, K., and Nultsch, W., 1993, Daily course of photosynthesis and photoinhibition in marine macroalgae investigated in the laboratory and field, Mar. Ecol. Progr. Ser. 97: 31.

    Google Scholar 

  • Helbling, E. W., Villafane, V., Ferrario. M., and Holm-Hansen, 0., 1992, Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species, Marine Ecology Progress Series 80: 89.

    Google Scholar 

  • Herndl, G.J., Müller-Niklas, G. and Frick, J., 1993, Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean, Nature 361: 717–719.

    Article  Google Scholar 

  • Herrmann, H., Ghetti, F., Scheuerlein, R. and Häder, D.-P., 1995, Photosynthetic oxygen and fluorescence measurements in Ulva laetevirens affected by solar irradiation, J. Plant Physiol. 145: 221–227.

    Article  CAS  Google Scholar 

  • Holmes R. W., Williams, P. M., and Eppley, R. W., 1967, Red water in La Jolla Bay, 1964–1966, Limnol. Oceanogr. 12: 503.

    Google Scholar 

  • Houghton, R. A. and Woodwell, G. M.., 1989, Global climatic change, Scientific American 260: 18.

    Article  Google Scholar 

  • Ignatiades, L., 1990, Photosynthetic capacity of the surface microlayer during the mixing period, J. Plankton Res. 12: 851

    Article  CAS  Google Scholar 

  • Jerlov, N. G., 1950, Ultraviolet radiation in the sea, Nature 166:.

    Google Scholar 

  • Jerlov, N. G., 1970, Light - General introduction, in “Marine Ecology,” Kinne, O., ed., vol. 1, p. 95.

    Google Scholar 

  • Karentz, D., Cleaver, J. E., and Mitchell, D. L., 1991, Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation, J. Phycol. 27: 326.

    Article  CAS  Google Scholar 

  • Kol, E., 1929, “Wasserblüte” der Sodateiche auf der Nagy Magyar Alföld ( Großen Ungarischen Tiefebene, I, Arch. Protistenk. 66: 515.

    Google Scholar 

  • Kolbowski, J., Reising, H., and Schreiber, U., 1990. Computer-controlled pulse modulation system for analysis of photoacoustic signals in the time domain, Photosynth. Res. 25: 309.

    Google Scholar 

  • Krause, G. H. and Weis, E., 1991, Chlorophyll fluorescence and photosynthesis: the basics, Ann. Rev. Plant. Physiol. Plant Mol. Biol. 42: 313.

    Google Scholar 

  • Lindholm, T., 1992. Ecological role of depth maxima of phytoplankton, Arch. Hydrobiol. Beih. Ergebn. Limnol. 35: 33–45.

    Google Scholar 

  • Liu, S.-M., Häder, D.-P. and Ullrich, W., 1990, Photoorientation in the freshwater dinoflagellate, Peridiniur gatunense Nygaard, FEMS Microbiol. Ecol. 73:91. Lüning, K., 1985, “Meeresbotanik,” Thieme, Stuttgart.

    Google Scholar 

  • Marchant, H. J., Davidson, A. T. and Kelly, G. J., 1991, UV-B protecting pigments in the marine alga Phaeocvstis pouchetii from Antarctica, Mar. Biol. 109: 391–395.

    Article  CAS  Google Scholar 

  • Murali, N. S. and Teramura, A. H., 1985, Effects of ultraviolet-B irradiance on soybean. VI. Influence of phosphorus nutrition on growth and flavonoid content, Physiol. Plant. 63: 413–416.

    Article  CAS  Google Scholar 

  • Nixon, S.W., 1988, Physical energy inputs and the comparative ecology of lake and marine ecosystems, Limnol. Oceanogr. 33: 1005–1025.

    Google Scholar 

  • Nultsch, W. and Agel, G., 1986, Fluence rate and wavelength dependence of photobleaching in the cyanobacterium Anahaena variahilis. Arch. Microbiol. 144: 268.

    Google Scholar 

  • Nultsch, W. and Häder, D.-P., 1988, Photomovement in motile microorganisms II., Photochem. Photobiol. 47: 837.

    Google Scholar 

  • Piazena, H. and Häder, D.-P., 1994, Penetration of solar UV irradiation in coastal lagoons of the southern Baltic sea and its effect on phytoplankton communities, Photochem. Photobiol. 60: 463–469.

    Google Scholar 

  • Piazena, H. and Häder, D.-P., 1995, Vertical distribution of phytoplankton in coastal waters and its detection by backscattering measurements, in press.

    Google Scholar 

  • Pringsheim. E. G., 19.56, Contributions towards a monograph of the genus Euglena, Nova Acta Leopoldina 125: 5.

    Google Scholar 

  • Proteau, P. J., Gerwick, W. H., Garcia-Pichel, F. and Castenholz, R., 1993, The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria, Experientia 49: 825–829.

    Article  CAS  Google Scholar 

  • Raven, J. A.. 1991, Responses of aquatic photosynthetic organisms to increased solar UVB, J. Photochem. Photobiol., B: Biol. 9: 239.

    Google Scholar 

  • Rhiel, E., Häder, D.-P., and Wehrmeyer, W., 1988a, Photoorientation in a freshwater Cryptomonas species, J. Photochem. Photobiol. B: Biol. 2: 123.

    Google Scholar 

  • Rhiel, E., Häder, D.-P., and Wehrmeyer, W., 1988b, Diaphototaxis and gravitaxis in a freshwater Cryptomonas, Plant Cell Physiol. 29: 755.

    CAS  Google Scholar 

  • Shíbata, H., Baba, K. and Ochiai, H., 1991, Near-UV irradiation induces shock proteins in Anacystis nidulans R-2; possible role of active oxygen, Plant Cell Physiol. 32: 771–776.

    Google Scholar 

  • Siebeck, O. and Böhm, U., 1987, Untersuchungen zur Wirkung der UV-B-Strahlung auf kleine Wassertiere, BPT Bericht, Gesellschaft für Strahlen-und Umweltforschung, München. p. 84.

    Google Scholar 

  • Siegenthaler, U. and Sarmiento, J. L., 1993, Atmospheric carbon dioxide and the ocean, Nature 365: 119–125.

    Article  CAS  Google Scholar 

  • Smith, R.C., 1989, Ozone, middle ultraviolet radiation and the aquatic environment, Photochem. Photobiol. 50: 459–468.

    Google Scholar 

  • Smith, R. C. and Baker, K. S., 1978. Penetration of UV-B and biologically effective dose-rates in natural waters. Photochem. Photobiol. 29: 311.

    Google Scholar 

  • Smith, R. C. and Tyler, J. E., 1976, Transmission of solar radiation into natural waters, in “Photochemical and Photophysical Reviews,” Smith, R. C., ed., vol. 1, 117. Plenum Press, London, New York.

    Google Scholar 

  • Smith, R. C.. Prezelin, B. B., Baker, K. S., Bidigare, R. R., Boucher, N. P., Coley, T., Karentz, D., Macintyre, S., Matlick, H. A., Menzies, D., Ondrusek, M., Wan, Z., and Waters, K. J., 1992, Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters, Science 255: 952.

    Article  CAS  Google Scholar 

  • Taylor, W. R., Seliger, H. H., Fastie, W. G., and McElroy, W. D., 1966, Biological and physical observations on a phosphorescent bay in Falmouth harbor, Jamaica, J. Mar. Res. 24: 28.

    Google Scholar 

  • Tevini, M., Braun, J. and Fieser, G., 1991, The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation. Photochem. Photobiol. 53: 329–333.

    Google Scholar 

  • Tirlapur, U., Scheuerlein, R., and Häder, D.-P., 1993, Motility and orientation of a dinoflagellate, Gvmnoclinium, impaired by solar and ultraviolet radiation, FEMS Microbiol. Ecol. 102: 167.

    Google Scholar 

  • Trebst, A., 1991, A contact site between the two reaction center polypeptides of photosystem II is involved in photoinhibition, Z. Naturf. 46: 557.

    CAS  Google Scholar 

  • Tyler, M. A. and Seliger, H. H., 1978, Annual subsurface transport of a red tide dinoflagellate to its bloom area: water circulation patterns and organism distributions in the Chesapeake Bay, Limnol. Oceanogr. 23: 227.

    Google Scholar 

  • Tyler, M. A., and Seliger, H. H., 1981, Selection for a red tide organism:

    Google Scholar 

  • Physiological responses to the physical environment, Limnol. Oceanogr. 26:310. Watanabe, M. and Furuya, M., 1974, Action spectrum of phototaxis in a

    Google Scholar 

  • cryptomonad alga. Cryptomonas sp., Plant Cell Physiol. 15:413.

    Google Scholar 

  • Williamson, C.E. and Zagarese, H.E. (eds.), 1995, Impact of UV-B radiation on pelagic freshwater ecosystems, Advances in Limnology. Vol. 43, Special Issue, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 226 pp.

    Google Scholar 

  • Worrest, R. C. and Häder, D.-P., 1989, Effects of stratospheric ozone depletion on marine organisms, Environmental Conservation 16: 261–263.

    Article  CAS  Google Scholar 

  • Yamamoto, K. M., Satake, M., Shinagawa, H. and Fujiwara, Y., 1983, Amelioration of the ultraviolet sensitivity of an Escherichia coli recA mutant in the dark by photoreactivating enzyme, Mol. Gen. Genet. 190: 511–515.

    Google Scholar 

  • Yasuhira, S., Mitani, H. and Shima, A., 1992, Enhancement of photorepair of ultraviolet-induced pyrimidine dimers by preillumination with fluorescent light in the goldfish cell line. The relationship between survival and yield of pyrimidine dimers, Photochem. Photobiol. 55: 97–101.

    Google Scholar 

  • Yentsch C. S., Backus, R. H., and Wing, A., 1964, Factors affecting the vertical distribution of bioluminescence in the euphotic zone, Limnol. Oceanogr. 9:519. Zamansky, G. B., Perrino, B. A. and Chou, I.-N., 1991, Disruption of cytoplasmic

    Google Scholar 

  • microtubules by ultraviolet radiation, Exp. Cell Res. 195: 269–273.

    Google Scholar 

  • Zündorf, I. and Häder, D.-P., 1991, Biochemical and spectroscopic analysis of UV effects in the marine flagellate Cryptomonas maculata, Arch. Microbiol. 156: 405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Häder, DP. (1997). Impact on Marine Ecosystems. In: Zerefos, C.S., Bais, A.F. (eds) Solar Ultraviolet Radiation. NATO ASI Series, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03375-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03375-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08300-6

  • Online ISBN: 978-3-662-03375-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics