Skip to main content

Gas Chromatographic Techniques for the Measurement of Isoprene in Air

  • Chapter

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 19))

Abstract

Isoprene emission from plants was discovered by Sanadze in 1966 (reviewed in Sanadze 1991) while studying plant-insect interactions. Isoprene, 2-methyl-1,3butadiene, appears to have no role in plant-insect interactions but the amount of isoprene emitted is so great that it affects atmospheric chemistry and may be important to the carbon balance of some plants. Rasmussen and Went (1964) independently discovered isoprene emission from plants while studying plant hydrocarbon emissions (Went 1960). Isoprene is the root member of a large class of compounds, many of which are important in plant fragrance. Isoprene itself is not universally appealing when in high enough concentration to be detected by smell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almasi E, Kirshen N, Kern H (1993) The determination of sub part-per-billion levels of volatile organic compounds in air by preconcentration from small sample volumes. Int J Environ Anal Chem 52:39–48

    Article  CAS  Google Scholar 

  • Altshuller AP, Cohen IR (1960) Application of diffusion cells to the production of known concentrations of gaseous hydrocarbons. Anal Chem 32:802–810

    Article  CAS  Google Scholar 

  • Anonymous (1995) Analytical chemistry lab guide edition. Anal Chem 74–75–75

    Google Scholar 

  • Atkinson R (1986) Kinetics and mechanisms of the gas-phase reactions of hydroxyl radical with organic compounds under atmospheric conditions. Chem Rev 86:69–201

    Article  CAS  Google Scholar 

  • Atkinson R, Carter WPL (1995) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem Rev 84:437–470

    Article  Google Scholar 

  • Berkley RE, Miller M, Chang JC, Oliver K, Fortune C (1981) Evaluation of commercially available portable gas chromatographs. Proc EPA/AWMA Symp on Toxic and Related Air Pollutants, 413 pp. Air and waste management association; Pittsburgh, 1992

    Google Scholar 

  • Betz WR, Lambaise SJ (1989) Characterization of carbon molecular sieves and activated charcoal for use in airborne contaminant sampling. Am Ind Hyg Assoc J 50:181–187

    Article  Google Scholar 

  • Betz WR, Lambiase SJ (1991) Dynamic gas solid chromatographic techniques for characterizing carbon molecular-sieves. J Chromatogr 556:433–440

    Article  CAS  Google Scholar 

  • Bishop RW, Valis RJ (1990) A laboratory evaluation of sorbent tubes for use with a thermaldesorption gas chromatography-mass selective detection technique. J Chromatogr Sci 28:589–593

    CAS  Google Scholar 

  • Brown RH, Purnell CJ (1979) Collection and analysis of trace organic vapour pollutants in ambient atmospheres: the performance of a Tenax-GC adsorbant tube. J Chromatogr 28:589–593

    Google Scholar 

  • Buffington R (1988) GC-Atomic emission spectroscopy using microwave plasmas, Hewlett-Packard Co.

    Google Scholar 

  • Burns WF, Tingey DT, Evans RC, Bates EH (1983) Problems with a Nafion membrane for drying chromatographic samples. J Chromatogr 269:1–9

    Article  CAS  Google Scholar 

  • Cao XL, Hewitt CN (1993a) Thermal-desorption efficiencies for different adsorbate adsorbent systems typically used in air monitoring programs. Chemosphere 27:695–705

    Article  CAS  Google Scholar 

  • Cao XL, Hewitt CN (1993b) Passive sampling and gas-chromatographic determination of low concentrations of reactive hydrocarbons in ambient air with reduction gas detector. J Chromatogr 648:191–197

    Article  CAS  Google Scholar 

  • Cardin DB, Deschenes JT (1993) A cryogenless autogc system for enhanced ozone monitoring using a simplified, single detector approach. Air and Waste Management Association, Pittsburgh, pp 282–288

    Google Scholar 

  • Ciccioli P, Brancaleoni E, Cecinato A, Sparapani R, Frattoni M (1993) Identification and determination of biogenic and anthropogenic volatile organic compounds in forest areas of northern and southern Europe and a remote site of the Himalaya region by high-resolution gaschromatography mass-spectrometry. J Chromatogr 643:55–69

    Article  CAS  Google Scholar 

  • Cox RD, Earp RF (1982) Determination of trace level organics in ambient air by high-resolution gas chromatography with simultaneous photoionization and flame ionization detection. Anal Chem 54:2265–2270

    Article  CAS  Google Scholar 

  • Das TN (1992) Terpenes in a conifer forest — detection at sub-parts per billion level without sample preconcentration. Atmos Environ Pt A Gen Top 26:2853–2857

    Article  Google Scholar 

  • Driscoll JN (1977) Evaluation of a new photoionization detector for organic compounds. J Chromatogr 134:49–55

    Article  CAS  Google Scholar 

  • Driscoll JN, Ford J, Jaramillo LF, Gruber ET (1978) Gas chromatographic detection and identification of aromatic and aliphatic hydrocarbons in complex mixtures by coupling photoionization and flame-ionization detectors. J Chromatogr 158:171–180

    Article  CAS  Google Scholar 

  • Foulger BE, Simmonds PG (1993) Ambient-temperature gas purifier suitable for the trace analysis of carbon-monoxide and hydrogen and the preparation of low-level carbon-monoxide calibration standards in the field. J Chromatogr 630:257–263

    Article  Google Scholar 

  • Freedman AN (1980) The photoionization detector: theory, performance, and application as a low-level monitor of oil vapor. J Chromatogr 190:263–273

    Article  CAS  Google Scholar 

  • Goldan PD, Kuster WC, Fehsenfeld FC, Montzka SA (1993) The observation of a C5 alcohol emission in a North American pine forest. Geophys Res Lett 20:1039–1042

    Article  CAS  Google Scholar 

  • Greenberg JP, Zimmerman PR, Taylor BE, Silver GM, Fall R (1993) Sub-parts per billion detection of isoprene using a reduction gas detector with a portable gas-chromatograph. Atmos Environ Pt A Gen Top 27:2689–2692

    Article  Google Scholar 

  • Grob RL (1977) Theory of gas chromatography. John Wiley, New York, pp 40–112

    Google Scholar 

  • Guenther AB, Monson RK, Fall R (1991) Isoprene and monoterpene emission rate variability: observations with Eucalyptus and emission rate algorithm development. J Geophys Res 96:10, 799–10, 808

    Article  Google Scholar 

  • Hazard SA, Brown JL (1993) Recovery after storage and desorption efficiencies for volatile organic compounds spiked on thermal desorption tubes. Air and Waste Management Association, Pittsburgh, pp 571–578

    Google Scholar 

  • Helmig D, Arey J (1992) Organic chemicals in the air at Whitaker’s Forest/Sierra Nevada Mountains, California. Sci Total Environ 112:233–250

    Google Scholar 

  • Helmig D, Greenberg JP (1994) Automated in-situ gas-chromatographic mass-spectrometric analysis of ppt level volatile organic trace gases using multistage solid-adsorbent trapping. J Chromatogr 677:123–132

    Article  CAS  Google Scholar 

  • Helmig D, Vierling L (1995) Water adsorption capacity of the solid adsorbants Tenax TA, Tenax GR, Carbotrap, Carbotrap C, Carbosieve SIII, and Carboxen 569 and water management techniques for the atmospheric sampling of organic gases. Anal Chem 67:4380–4386

    Article  CAS  Google Scholar 

  • Hills AJ, Zimmerman PR (1990) Isoprene measurement by ozone-induced chemiluminescence. Anal Chem 62:1055–1060

    Article  CAS  Google Scholar 

  • Hills AJ, Fall R, Monson RK (1991) Methods for the analysis of isoprene from leaves. Springer, Berlin Heidelberg New York, pp 288–315

    Google Scholar 

  • Hyver KJ, Parcher JF (1984) Nonreactive coadsorption of solutes on a sampling adsorbent. Anal Chem 56:274–278

    Article  CAS  Google Scholar 

  • Janson RW (1993) Monoterpene emissions from Scots pine and Norwegian spruce. J Geophys Res 98:2839–2850

    Article  Google Scholar 

  • Jennings W (1980) Gas chromatography with glass capillary columns. Academic Press, New York, pp 1–18

    Google Scholar 

  • Juuti S, Arey J, Atkinson R (1990) Monoterpene emission rate measurement from Monterey pine. J Geophys Res 95:7515–7520

    Article  CAS  Google Scholar 

  • Kelly NA (1983) The contamination of fluorocarbon-film bags by hydrocarbons and nitrogenoxides. J Air Pollut Control Assoc 33:120–125

    Article  CAS  Google Scholar 

  • Lewis AC, Seakins PW, Denha AM, Bartle KD, Pilling MJ (1995) Programmed temperatire vapoization injection (PTV) for in situ field measurements of isoprene, and selected oxidation products in a eucalyptus forest. Atmos Environ 29:1871–1875

    Article  CAS  Google Scholar 

  • Loreto F, Sharkey TD (1990) A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L. Planta 182:523–531

    Article  CAS  Google Scholar 

  • Maier I, Fieber M (1988) Retention characteristics of volatile compounds on Tenax-TA. J High Resolut Chromatogr Commun 11:566–576

    Article  CAS  Google Scholar 

  • McFadden WH (1973) Techniques of combined gas chromatography/mass spectrometry: applications in organic analysis. John Wiley, New York, p 1

    Google Scholar 

  • Monson RK, Fall R (1989) Isoprene emission from aspen leaves. The influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90:267–274

    Article  PubMed  CAS  Google Scholar 

  • Namiesnik J (1984) Generation of standard gaseous mixtures. J Chromatogr 300:79–108

    Article  CAS  Google Scholar 

  • Namiesnik J (1988) Preconcentration of gaseous organic pollutants in the atmosphere. Talanta 35:567–587

    Article  PubMed  CAS  Google Scholar 

  • Nelson GO (1971) Controlled test atmospheres. Ann Arbor Science Publishers, Ann Arbor

    Google Scholar 

  • Nie D, Kleindienst TE, Arnts RR, Sickles JE (1995) The design and test of a relaxed eddy accumulation system. J Geophys Res 100:11415–11423

    Article  Google Scholar 

  • O’hara D, Singh HB (1988) Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector. Atmos Environ 22:2613–2615

    Article  Google Scholar 

  • Pate B, Jayanty RKM, Peterson MR, Evans GF (1992) Temporal stability of polar organiccompounds in stainless-steel canisters. J Air Waste Manage Assoc 42:460–462

    Article  CAS  Google Scholar 

  • Pellizari E, Demian B, Krost K (1984) Sampling of organic compounds in the presence of reactive inorganic gases with Tenax GC. Anal Chem 56:793–798

    Article  Google Scholar 

  • Peters RJB, Duivenbode ADVRV, Duyzer JH, Verhagen HLM (1994) The determination of terpenes in forest air. Atmos Environ 28:2413–2419

    Article  CAS  Google Scholar 

  • Pierotti D (1990) Analysis of trace oxygenated hydrocarbons in the environment. J Atmos Chem 10:373–382

    Article  CAS  Google Scholar 

  • Rasmussen RA, Jones CA (1973) Emission isoprene from leaf discs of Hamamelis. Phytochemistry 12:15–19

    Article  CAS  Google Scholar 

  • Rasmussen RA, Khalil MAK (1988) Isoprene over the Amazon Basin. J Geophys Res 93:1417–1421

    Article  CAS  Google Scholar 

  • Rasmussen RA, Went FW (1964) Volatile organic material of plant origin in the atmosphere. Proc Natl Acad Sci USA 53:220

    Google Scholar 

  • Raymer JH, Cooper SD, Pellizzari ED (1989) Analyte competition on polyimide adsorbents studied by deuterated tracer pulse chromatography. ACS Monograph, American Chemical Society, Washington, DC

    Google Scholar 

  • Riba ML, Randrianalimanana E, Mathieu J, Torres L (1985) Preconcentration of atmospheric terpenes on solid adsorbants. Int J Environ Anal Chem 19:133–143

    Article  CAS  Google Scholar 

  • Riba ML, Tsiropoulos N, Clement B, Golfier A, Torres L (1988) Preconcentration and analysis of atmospheric isoprene and monoterpenes: system automation. J Chromatogr 456:165–173

    CAS  Google Scholar 

  • Riemer DB, Milne PJ, Farmer CT, Zika RG (1994) Determination of terpene and related compounds in semi-urban air by GC-MSD. Chemosphere 28:837–850

    Article  CAS  Google Scholar 

  • Roberts JM, Fehsenfield FC, Albritton DL, Sievers RE (1984) Sampling and analysis of monoterpene hydrocarbons in the atmosphere with Tenax gas chromatographic porous polymer. Butterworth, Boston, pp 371–387

    Google Scholar 

  • Rudolph J, Muller KP, Koppmann R (1990) Sampling of organic volatiles in the atmosphere at moderate and low pollution levels. Anal Chim Acta 236:197–211

    Article  CAS  Google Scholar 

  • Sanadze GA (1991) Isoprene effect — light dependent emission of isoprene by green parts of plants. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emissions by plants. Academic Press, San Diego, pp 135–152

    Chapter  Google Scholar 

  • Sanadze GA, Kursanov AL (1966) On certain conditions of the evolution of the diene C5H8 from poplar leaves. Sov Plant Physiol 13:184–189

    Google Scholar 

  • Schmidt U, Seiler W (1970) A new method for recording molecular hydrogen in atmospheric air. J Geophys Res 75:1713–1716

    Article  CAS  Google Scholar 

  • Schoene K, Steinhanses J, Konig A (1990) The sorptive efficiency of Tenax for binary vapor mixtures. Fresenius J Anal Chem 336:114–119

    Article  CAS  Google Scholar 

  • Seila RL (1976) GC-chemiluminescence method for the analysis of ambient terpenes. In: Proc Int Conf on Photochemical oxidant pollution and its control, vol 1, EPA-600/3–77–00a, US Environmental Protection Agency, Research Triangle Park, North Carolina, pp 41–50

    Google Scholar 

  • Sevcik J (1976) Detectors in gas chromatography. Elsevier, New York, pp 87–144

    Google Scholar 

  • Sharkey TD (1991) Stomatal control of trace gas emissions. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emissions by plants. Academic Press, San Diego, pp 335–339

    Chapter  Google Scholar 

  • Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333

    Article  Google Scholar 

  • Sharkey TD, Loreto F, Delwiche CF (1991) High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant Cell Environ 14:333–338

    Article  CAS  Google Scholar 

  • Singh HB, O’hara D, Herlth D, Sachse W, Blake DR, Bradshaw JD, Kankidou M, Crutzen PJ (1994) Acetone in the atmosphere: distribution, sources, and sinks. J Geophys Res 99:1805–1819

    Article  CAS  Google Scholar 

  • Stromvall AM, Petersson G (1992) Protection of terpenes against oxidative and acid decomposition on adsorbent cartridges. J Chromatogr 589:385–389

    Article  Google Scholar 

  • Sullivan JJ, O’Brien MJ (1977) Detectors. John Wiley, New York, pp 213–288

    Google Scholar 

  • Supelco (1995) Supelco Co. Chromatographic products catalogue, Belletonte, Pennsylvania

    Google Scholar 

  • Supina WR (1977) Columns and column selection in gas chromatography. John Wiley, New York, pp 114–148

    Google Scholar 

  • Tingey DT, Manning M, Grothaus LC, Burns WF (1979) The influence of light and temperature on isoprene emission rates from live oak. Physiol Plant 47:112–118

    Article  CAS  Google Scholar 

  • Van Eijk J, Kotzias D (1994) Sampling and analysis of isoprene in ambient air. Fresenius Environ Bull 3:220–225

    Google Scholar 

  • Warneck P (1988) Chemistry of the natural atmosphere. Academic Press, San Diego, 241 pp

    Google Scholar 

  • Went FW (1960) Blue hazes in the atmosphere. Nature 187:641–643

    Article  Google Scholar 

  • Willard HH, Merritt LL Jr, Dean JA (1965) Instrumental methods of analysis. Van Nostrand, Princeton, pp 503–504

    Google Scholar 

  • Yokouchi Y, Bandow H, Akimoto H (1993) Development of automated gas-chromatographic mass-spectrometric analysis for natural volatile organic-compounds in the atmosphere. J Chromatogr 642:401–407

    Article  CAS  Google Scholar 

  • Zimmerman PR (1979) Tampa Bay area photochemical oxidant study — determination of emission rates of hydrocarbons from indigenous species of vegatation in the Tampa/St. Petersburg Florida area. EPA 904/9–77–028, US Environmental Protection Agency, Atlanta

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arnts, R.R., Singsaas, E.L., Sharkey, T.D. (1997). Gas Chromatographic Techniques for the Measurement of Isoprene in Air. In: Linskens, H.F., Jackson, J.F. (eds) Plant Volatile Analysis. Modern Methods of Plant Analysis, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03331-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03331-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08268-9

  • Online ISBN: 978-3-662-03331-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics