Skip to main content

The Two-Body Problem

  • Chapter
Book cover Theory of Orbits

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 504 Accesses

Abstract

The two-body problem is the only case of the N-body problem that one can solve completely; therefore it has been investigated in all its details and there are innumerable treatments of it even at an elementary level with special regard to its application to the solar system. But the “solution” of this problem also has certain features which deserve to be discussed both on their own and as a basis from which to begin studying more complex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Notes

  • H. Pollard: Mathematical Introduction to Celestial Mechanics (Prentice-Hall, 1966; reprinted in Carus Mathematical Monographs, 1976 ).

    Google Scholar 

  • D. Brouwer, G. Clemence: Methods of Celestial Mechanics (Academic Press, 1961 ).

    Google Scholar 

  • H. C. Plummer: An introductory Treatise on Dynamical Astronomy (Cambridge University Press, 1918 ).

    Google Scholar 

  • A. E. Roy: Orbital Motion, 3rd edn (Adam Hilger, 1988 ).

    Google Scholar 

  • W. M. Smart: Celestial Mechanics ( Longmans, Green and Co., 1953 ).

    MATH  Google Scholar 

  • L. G. Taff: Celestial Mechanics. A Computational Guide for the Practitioner (Wiley, 1985 ).

    Google Scholar 

  • V. Fock: Zur Theorie des Wasserstoffatoms, Z. Physik 98, 145–154 (1935).

    Article  ADS  Google Scholar 

  • V. Bargmann: Zur Theorie des Wasserstoffatom, Z. Physik 99, 576–582 (1936).

    Article  ADS  Google Scholar 

  • V. Bargmann: Irreducible representations of the Lorentz group, Annals of Math. 48, 568–640 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  • H. Bacry, H. Ruegg: Dynamical groups and spherical potentials in classical mechanics, Commun. Math. Phys. 3, 323–333 (1966).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V. A. Dulock, H. V. McIntosh: On the degeneracy of the Kepler problem, Pac. J. Math. 19, 39–55 (1966).

    Google Scholar 

  • D. M. Fradkin: Existence of the dynamic symmetries 04 and SU3 for all classical central potential problems, Prog. Theor. Phys. 37, 798–812 (1967).

    Article  ADS  Google Scholar 

  • G. Györgyi: Kepler’s equation, Fock variables, Bacry’s generators and Dirac Brackets, II Nuovo Cimento A 53, 717–736 (1968).

    Article  ADS  Google Scholar 

  • G. E. Prince, C. J. Eliezer: On the Lie symmetries of the classical Kepler problem, J. Phys. A, Math. Gen. 14, 587–596 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V. M. Gorringe, P. G. Leach: The first integrals and their Lie algebra of the most general autonomous Hamiltonian of the form H = T +V possessing a Laplace-Runge-Lenz vector, J. Austral. Math. Soc. Ser. B34, 511–522 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  • V. M. Gorringe, P. G. Leach: Kepler’s third law and the oscillator’s isochronism, Am. J. Phys. 61, 991–995 (1993).

    Article  ADS  Google Scholar 

  • J. Roels, C. Aerts: Central forces depending on the distance only—case where all the bounded orbits are periodic, Celestial Mech. 44, 77–85 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • E. Onofri, M. Pauri: Search for periodic Hamiltonian flows: A generalized Bertrand’s theorem, J. Math. Phys. 19, 1850–1858 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • T. M. Burkardt, J. M. A. Danby: The solution of the Kepler’s Equation—I, Celestial Mech. 31, 95–107 (1983);

    Article  ADS  MATH  Google Scholar 

  • T. M. Burkardt, J. M. A. Danby: The solution of the Kepler’s Equation—II, 111., 317–328 (1983).

    Google Scholar 

  • P. Colwell: Kepler’s equation and Newton’s method, Celestial Mech. 52, 203–204 (1991).

    Article  ADS  MATH  Google Scholar 

  • R. H. Gooding, A. W. Odell: Procedures for solving Kepler’s Equation, Celestial Mech. 38, 307–334 (1986);

    Article  ADS  MATH  Google Scholar 

  • R. H. Gooding, A. W. Odell: The hyperbolic Kepler’s Equation (and the elliptic equation revisited), Ibid. 44, 267–282 (1988).

    MathSciNet  MATH  Google Scholar 

  • S. Mikkola: A cubic approximation for Kepler’s Equation, Celestial Mech. 40, 329–334 (1987).

    Article  ADS  MATH  Google Scholar 

  • E. W. Ng: A general algorithm for the solution of Kepler’s Equation for elliptic orbits, Celestial Mech. 20, 243–249 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • A. Nijenhuis: Solving Kepler’s Equation with high efficiency and accuracy, Celestial Mech. 51, 319–330 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R. A. Serafin: Bounds on the solution to Kepler’s Equation, Celestial Mech. 38, 111–121 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • G. R. Smith: A simple, efficient starting value for the iterative solution of Kepler’s Equation, Celestial Mech. 19, 163–166 (1979).

    Article  ADS  MATH  Google Scholar 

  • L. G. Taff, T. A. Brennan: Solving Kepler’s Equation, Celestial Mech. 46, 163176 (1989).

    Google Scholar 

  • R. Easton: Regularization of vector fields by surgery, J. Diff. Eq. 10, 92–99 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • J. Milnor: On the geometry of the Kepler problem, Amer. Math. Monthly 90, 353–365 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  • J. Moser: Regularization of the Kepler’s problem and the averaging method on a manifold, Commun. Pure Appl. Math. 23, 609–636 (1970).

    Article  ADS  MATH  Google Scholar 

  • E. A. Belbruno: Two-body motion under the inverse square central force and equivalent geodesic flows, Celestial Mech. 15, 465–476 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  • Yu. Osipov: The Kepler problem and geodesic flows in spaces of constant curvature, Celestial Mech. 16, 191–208 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • M. D. Vivarelli: On the connection among three classical mechanical problems via the hypercomplex KS transformation, Celestial Mech. 50, 109–124 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • J. F. Cariiiena, C. Lopez, M. A. Del Olmo, M. Santander: Conformal geometry of the Kepler orbit space, Celestial Mech. 52, 307–343 (1991).

    Article  ADS  Google Scholar 

  • V. I. Arnold, V. A. Vasilév: Newton’s Principia read 300 years later, Not. Amer. Math. Soc. 36, 1148–1154 (1989).

    Google Scholar 

  • L. Mittag, M. J. Stephen: Conformal transformations and the application of complex variables in mechanics and quantum mechanics, Am. J. Phys. 60, 207–211 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • T. Needhan: Newton and the transmutation of force, Amer. Math. Monthly 100, 119–137 (1993).

    Article  MathSciNet  Google Scholar 

  • W. Kaplan: Topology of the two-body problem, Amer. Math. Monthly 49, 316–323 (1942).

    Article  MathSciNet  Google Scholar 

  • S. Smale: Topology of mechanics—I, Inventiones Math. 10, 305–331 (1970);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • S. Smale: Topology of mechanics—II, Ibid. 11, 45–64 (1971).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boccaletti, D., Pucacco, G. (1996). The Two-Body Problem. In: Theory of Orbits. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03319-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03319-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08210-8

  • Online ISBN: 978-3-662-03319-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics