Skip to main content

Abstract

The fundamental energy gaps of most semiconductors span the energy range from zero to about 6 eV. Photons of sufficient energy can excite electrons from the filled valence bands to the empty conduction bands. As a result, the optical spectra of semiconductors provide a rich source of information on their electronic properties. In many semiconductors, photons can also interact with lattice vibrations and with electrons localized on defects, thus making optical techniques also useful for studying these excitations. Their optical properties are the basis of many important applications of semiconductors, such as lasers, light emitting diodes, and photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter 6

  1. L. Brillouin: Scattering of light and X-rays by a transparent homogeneous body: Influence of the thermal agitation (in French). Ann. Pysique 17, 88–122 (1922)

    Google Scholar 

  2. L.I. Mandelstam: On light scattering by an inhomogeneous medium (in Russian). Zh. Russko Fiz. Khim. Obshch. (J. Russian Physico-Chemical Soc.) 58, 381 (1926)

    Google Scholar 

  3. Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1989)

    Google Scholar 

  4. L. Mills: Nonlinear Optics (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  5. H. Haug, S.W. Koch: Quantum Theory of Optical and Electronic Properties of Semiconductors (World Scientific, Singapore 1990)

    Google Scholar 

  6. F. Henneberger, S. Schmidt-Rink, E.O. Göbel (eds.): Optics of Semiconductor Nanostructures (Akademie, Berlin 1993)

    Google Scholar 

  7. L.D. Landau, I.M. Lifshitz: Statistical Physics, 3rd edn. (Addison-Wesley, Reading, MA 1980)

    Google Scholar 

  8. P.Y. Yu, M. Cardona: Spatial dispersion in the dielectric constant of GaAs. Solid State Commun. 9, 1421–1424 (1971)

    ADS  Google Scholar 

  9. P. Etchegoin, M. Cardona: Stress induced optical activity in zincblende-type semiconductors. Solid State Commun. 82, 655–661 (1992)

    ADS  Google Scholar 

  10. V.M. Agranovich, V. Ginzburg: Crystal Optics with Spatial Dispersion, Springer Ser. Solid-State Sci., Vol.42 (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  11. J.D. Jackson: Classical Electrodynamics, 2nd edn. (Wiley, New York 1975)

    MATH  Google Scholar 

  12. M. Cardona: Modulation Spectroscopy, Solid State Physics, Suppl.11 (Academic, New York 1969) pp. 55–65

    Google Scholar 

  13. D.E. Aspnes, A.A. Studna: Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985–1009(1983)

    ADS  Google Scholar 

  14. P.S. Hauge: Recent developments in instrumentation in ellipsometry. Surf. Sci. 96, 108–140(1980)

    ADS  Google Scholar 

  15. H.R. Philipp, H. Ehrenreich: Ultraviolet optical properties — optical properties of III-V compounds. Semiconductors and Semimetals 3, 93–124 (Academic, New York 1967)

    Google Scholar 

  16. C. Kunz: Synchrotron Radiation, Techniques and Applications, Topics Curr. Phys., Vol.10 (Springer, Berlin, Heidelberg 1979)

    Google Scholar 

  17. E.E. Koch: Handbook of Synchrotron Radiation (North-Holland, Amsterdam 1983)

    Google Scholar 

  18. W. Heitler: The Quantum Theory of Radiation, 3rd edn. (Oxford Univ. Press, Oxford 1954) pp. 56–64

    MATH  Google Scholar 

  19. M. Cardona, F.H. Pollak: Energy-band structure of germanium and silicon: The k·p method. Phys. Rev. 142, 530–543 (1966)

    ADS  Google Scholar 

  20. M. Cardona, N.E. Christensen, G. Fasol: Relativistic band structure and spin-orbit splitting of zincblende-type semiconductors. Phys. Rev. B 38, 1806–1827 (1988)

    ADS  Google Scholar 

  21. L. Van Hove: The occurence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189–1193 (1953)

    ADS  MATH  Google Scholar 

  22. M.L. Cohen, J.R. Chelikowsky: Electronic Structure and Optical Properties of Semiconductors, 2nd edn., Springer Ser. Solid-State Sci., Vol.75 (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  23. C.W. Higginbotham: Band structure and optical properties of semiconductors, PhD Thesis, Brown University, Providence, RI (1970)

    Google Scholar 

  24. O. Madelung, M. Schulz, H. Weiss (eds.): Landolt-Börnstein, Ser.III, Vol.22 (Semiconductors), Subvol. a: Intrinsic properties of group-IV elements, III–V, II–VI and I–VII compounds (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  25. R.B. Schoolar, J.R. Dixon: Optical constant of lead sulfide in the fundamental absorption edge region. Phys. Rev. 137, A667–670 (1965)

    ADS  Google Scholar 

  26. G.W. Gobeli, H.Y. Fan: Semiconductor Research, Second Quartertly Rept., Purdue University, Lafayette, IN (1956), as reproduced in [6.25]

    Google Scholar 

  27. E.J. Johnson: Absorption near the fundamental edge, optical properties of III-V compounds. Semiconductor and Semimetals 3, 153–258 (Academic, New York 1967)

    Google Scholar 

  28. G.G. MacFarlane, V. Roberts: Infrared absorption of germanium near the lattice edge. Phys. Rev. 97, 1714–1716 (1955);

    ADS  Google Scholar 

  29. G.G. MacFarlane, V. Roberts: Infrared absorption of silicon near the lattice edge. Phys. Rev. 98, 1865–1866 (1955)

    ADS  Google Scholar 

  30. G.G. MacFarlane, T.P. McLean, J.E. Quarrington, V. Roberts: Fine structure in the absorption-edge spectrum of Ge. Phys. Rev. 108, 1377–1383 (1957)

    ADS  Google Scholar 

  31. M. Gershenzon, D.G. Thomas, R.E. Dietz: Radiative transitions near the band edge of GaP, in Proc. Int’l Conf. on the Physics of Semiconductors, ed. by A.C. Stickland (IOP, London 1962) p.752–759

    Google Scholar 

  32. S. Nikitine: Excitons, in Optical Properties of Solids, ed. by S. Nudelman, S.S. Mitra (Plenum, New York 1969) pp. 197–237

    Google Scholar 

  33. G.H. Wannier: The structure and electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937)

    ADS  Google Scholar 

  34. N.F. Mott: Conduction in polar crystals: II. The conduction band and ultra-violet absorption of alkali-halide crystals. Trans. Faraday Soc. 34, 500–506 (1938)

    Google Scholar 

  35. R.S. Knox: Theory of Excitons, Solid State Physics, Suppl.5, ed. by F. Seitz, D. Turnbull (Academic, New York 1963)

    Google Scholar 

  36. D.L. Dexter, R.S. Knox: Excitons (Wiley, New York 1965)

    Google Scholar 

  37. K. Cho (ed.): Excitons, Topics Curr. Phys., Vol.14 (Springer, Berlin, Heidelberg 1974)

    Google Scholar 

  38. J.J. Hopfield: Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555–1567 (1958)

    ADS  MATH  Google Scholar 

  39. Y. Toyozawa: On the dynamical behavior of an exciton. Suppl. Prog. Theor. Phys. 12, 111–140(1959)

    ADS  Google Scholar 

  40. R.J. Elliott: Intensity of optical absoprtion by excitons. Phys. Rev. 108, 1384–1389(1957)

    ADS  Google Scholar 

  41. A. Baldereschi, N.O. Lipari: Energy levels of direct excitons in semiconductors with degenerate bands. Phys. Rev. B 3, 439–450 (1971)

    ADS  Google Scholar 

  42. A. Baldereschi, N.O. Lipari: Spherical model of shallow acceptor states in semiconductors. Phys. Rev. B 8, 2697–2709 (1973)

    ADS  Google Scholar 

  43. S. Adachi: Physical Properties of III–V Semiconductor Compounds (Wiley, New York 1992)

    Google Scholar 

  44. B. Segall, D.T.F. Marple: Intrinsic exciton absorption, in Physics and Chemistry of II–VI Compounds, ed. by M. Aven, J.S. Prener (North-Holland, Amsterdam 1967) pp. 319–378

    Google Scholar 

  45. M. Altarelli, N.O. Lipari: Exciton dispersion in semiconductors with degenerate bands. Phys. Rev. B 15, 4898–4906 (1977)

    ADS  Google Scholar 

  46. P.Y. Yu: Resonant Brillouin scattering of exciton polaritons. Comments Solid State Phys. 9, 37–48(1979)

    Google Scholar 

  47. J.J. Hopfield: Aspects of polaritons. J. Phys. Soc. Jpn., Suppl. 21, 77–88 (1966)

    Google Scholar 

  48. L.D. Landau, I.M. Lifshitz: Quantum Mechanics, Nonrelativistic Theory, 3rd edn. (Addison-Wesley, Reading, MA 1965) pp. 116–125 and 600–610

    Google Scholar 

  49. M.D. Sturge: Optical Absorption of gallium arsenide between 0.6 and 2.75 eV. Phys. Rev. 127, 768–773 (1962)

    ADS  Google Scholar 

  50. P.W. Baumeister: Optical absorption of cuprous oxide. Phys. Rev. 121, 359–362 (1961)

    ADS  Google Scholar 

  51. Y. Petroff, P.Y. Yu, Y.R. Shen: Study of photoluminescence in Cu2O. Phys. Rev. B 12, 2488–2495 (1975)

    ADS  Google Scholar 

  52. Y. Petroff, M. Balkanski: Coulomb effects at saddle-type critical points in CdTe, ZnTe, ZnSe, and HgTe. Phys. Rev. B 3, 3299–3301 (1971)

    ADS  Google Scholar 

  53. J.P. Walter, M.L. Cohen, Y. Petroff, M. Balkanski: Calculated and measured reflectivity of ZnTe and ZnSe. Phys. Rev. B 1, 2661–2667 (1970)

    ADS  Google Scholar 

  54. E.O. Kane: Coulomb effects at saddle-type critical points. Phys. Rev. 180, 852–858 (1969)

    ADS  Google Scholar 

  55. S. Antoci, G.F. Nardelli: Evidence for a high sensitivity of A2–A1 resonant absorption structures on energy-band behavior for CdTe and ZnTe. Phys. Rev. B 6, 1311–1314(1972)

    ADS  Google Scholar 

  56. S. Flügge, H. Marschall: Rechenmethoden der Quantentheorie (Springer, Berlin, Heidelberg 1952) p.80

    MATH  Google Scholar 

  57. J.C. Phillips: Excitons, in The Optical Properties of Solids, ed. by J. Taue (Academic, New York 1966) pp. 155–184

    Google Scholar 

  58. U. Fano: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    ADS  MATH  Google Scholar 

  59. W. Hanke, L.J. Sham: Many-particle effects in the optical spectrum of a semiconductor. Phys. Rev. B 21, 4656–73 (1980)

    ADS  Google Scholar 

  60. N. Meskini, H.J. Mattausch, W. Hanke: Many-body effects in the absorption spectrum of a heteropolar crystal. Solid State Commun. 48, 807–809 (1983)

    ADS  Google Scholar 

  61. B. Velicky, J. Sak: Excitonic effects in the interband absorption of semiconductors. Phys. Status Solidi 16, 147–157 (1966)

    Google Scholar 

  62. F.A. Jenkins, H.E. White: Fundamentals of Optics, 3rd edn. (McGraw-Hill, New York 1957) p.472

    MATH  Google Scholar 

  63. M. Born, K. Huang: Dynamical Theory of Crystal Lattices (Oxford Univ. Press, Oxford 1988, reprint of the original 1954 edition) pp. 228–238

    Google Scholar 

  64. M. Hass: Lattice reflections, in Optical Properties of III–V Compounds, Semiconductors and Semimetals, Vol.3 (Academic, New York. 1967) pp. 3–16

    Google Scholar 

  65. H.D. Fuchs, C.H. Grein, R.I. Devlin, J. Kuhl, M. Cardona: Anharmonic decay time, isotopic scattering time, and inhomogeneous line broadening of optical phonons in 70Ge, 76Ge and natural Ge crystals. Phys. Rev. B. 44, 8633–8642 (1991)

    ADS  Google Scholar 

  66. R.J. Collins, H.Y. Fan: Infrared lattice absorption bands in germanium, silicon and diamond. Phys. Rev. 93, 674–678 (1954)

    ADS  Google Scholar 

  67. F.A. Johnson: Lattice absorption bands in silicon. Proc. Phys. Soc. (London) 73, 265–272 (1959)

    ADS  Google Scholar 

  68. M. Lax, E. Burstein: Infrared lattice absorption in ionic and homopolar crystals. Phys. Rev. 97, 39–52 (1955)

    ADS  MATH  Google Scholar 

  69. J.L. Birman: Space group selection rules: Diamond and zinc blende. Phys. Rev. 127, 1093–1106 (1962)

    ADS  MATH  Google Scholar 

  70. W.G. Spitzer: Multiphonon lattice absorption, in Optical Properties of III–V Compounds. Semiconductors and Semimetals 3, 17–69 (Academic, New York 1967)

    Google Scholar 

  71. H. Bilz, R. Geik, K.F. Renk: Lattice vibrations and infrared absorption of germanium, silicon, and diamond, in Proc. Int’l Conf. on Lattice Dynamics, ed. by R.F. Wallis (Pergamon, Oxford 1963) p.355–368

    Google Scholar 

  72. J.C. Phillips: Covalent Bonding in Crystals, Molecules, and Polymers (Univ. Chicago Press, Chicago 1969)

    Google Scholar 

  73. W. A. Harrison: Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York 1989)

    Google Scholar 

  74. S.K. Sinha: Phonons in semiconductors. CRC Crit. Rev. Solid State Sci. 3, 273–334 (1973)

    Google Scholar 

  75. S. de Gironcoli, S. Baroni, R. Resta: Piezoelectric properties of III–V semiconductors from first-principles linear-response theory. Phys. Rev. Lett. 62, 2853–2856 (1989)

    ADS  Google Scholar 

  76. J.A. Sanjurjo, E. Lopez-Cruz, P. Vogl, M. Cardona: Dependence on volume of the phonon frequencies and their IR effective charges of several III–V semicon-dutors. Phys. Rev. B 28, 4579–4584 (1983)

    ADS  Google Scholar 

  77. P. Vogl: In Physics of Nonlinear Transport in Semiconductors, ed. by D.K. Ferry, J.R. Barker, C. Jacoboni (Plenum, New York 1980 pp. 75–116

    Google Scholar 

  78. R.D. King-Smith, D. Vanderbilt: Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993)

    ADS  Google Scholar 

  79. H. Ibach, H. Lüth: Solid-State Physics, 2nd edn. (Springer, Berlin, Heidelberg 1995) Chap.9

    Google Scholar 

  80. C. Kittel: Introduction to Solid State Physics, 6th edn. (Wiley, New York 1986)

    Google Scholar 

  81. H.Y. Fan: Effects of free carries on the optical properties, in Optical Properties on III–V Compounds. Semiconductors and Semimetals 3, 405–419 (Academic, New York 1967)

    Google Scholar 

  82. J.R. Dixon: Optical absorption mechanism in InAs, in Proc. Int’l Conf. on the Physics of Semiconductors (Czech. Acad. Sci., Prague; and Academic, New York 1961) p.366–368

    Google Scholar 

  83. R. Braunstein, E.O. Kane: The valence band structure of the III–V compounds. J. Phys. Chem. Solids 23, 1423–1429 (1962)

    ADS  Google Scholar 

  84. W.G. Spitzer, H.Y. Fan: Determination of optical constants and carrier effective mass of semicondutors. Phys. Rev. 106, 882–890 (1957)

    ADS  Google Scholar 

  85. G. Herzberg: Atomic Spectra and Atomic Structure (Dover, New York 1944)

    Google Scholar 

  86. C. Jagannath, Z.W. Grabowski, A.K. Ramdas: Linewidth of the electronic excitation spectra of donors in silicon. Phys. Rev. B 23, 2023–2098 (1981)

    Google Scholar 

  87. R.L. Aggarwal, A.K. Ramdas: Optical determination of the symmetry of the ground states of group-V donors in silicon. Phys. Rev. 140, A1246–1253 (1965)

    ADS  Google Scholar 

  88. T.M. Lifshits, F.Ya. Nad’: Photoconductivity in germanium doped with group-V impurities at photon energies below the impurity ionization energy. Sov. Phys.-Dokl. 10, 532–533 (1965)

    Google Scholar 

  89. K. Seeger: Semiconductor Physics, 5th edn., Springer Ser. Solid-State Sci., Vol.40 (Springer, Berlin, Heidelberg 1991) pp. 6–70

    Google Scholar 

  90. E.E. Haller, W.L. Hansen: High resolution Fourier transform spectroscopy of shallow acceptors in ultra-pure germanium. Solid State Commun. 15, 687–692 (1974)

    ADS  Google Scholar 

  91. A.K. Ramdas, S. Rodriguez: Spectroscopy of the solid state analogues of the hydrogen atom: Donors and acceptors in semiconductors. Rep Prog. Phys. 44, 1297–1387 (1981)

    ADS  Google Scholar 

  92. O.J. Glembocki, B.V. Shanabrook, N. Bottka, W.T. Beard, J. Comas: Photore-flectance characterization of interband transitions in GaAs/AlAs multiple quantum wells and modulation doped heterojunctions. Appl. Phys. Lett. 46, 970–972 (1985)

    ADS  Google Scholar 

  93. A. Frova, P. Handler: Electric field shift of the absorption edge in the space charge region of a Ge p-n junction, in Physics of Semiconductors, ed. by M. Hulin (Dunod, Paris 1964) p. 157–164

    Google Scholar 

  94. B.O. Seraphin, R.B. Hess: Franz-Keldysh effect above the fundamental edge in germanium. Phys. Rev. Lett. 14, 138–140 (1965)

    ADS  Google Scholar 

  95. D.E. Aspnes: Modulation spectroscopy/electric field effects on the dielectric function of semiconductors, in Handbook of Semiconductors, ed. by M. Balkanski (North-Holland, Amsterdam 1980) Vol.2, p. 109–154

    Google Scholar 

  96. F.H. Pollak, H. Shen: Modulation spectroscopy of semiconductors: Bulk/thin films, microstructures, surfaces/interfaces and devices. Mater. Sci. Eng. R 10, 275–374 (1993)

    Google Scholar 

  97. D.D. Sell. E.E. Stokowski: Modulated piezoreflectance and reflectance studies of GaAs, in Proc. 10th Int’l Conf. on the Physics of Semiconductors, ed. by S.P. Keller, C. Hensel, F. Stern (Nat’l Bureau of Standards, Springfield, VA 1970) pp. 417–422

    Google Scholar 

  98. R.R.L. Zucca, Y.R. Shen: Wavelength-modulation spectra of some semiconductors. Phys. Rev. B 1, 2668–2676 (1970)

    ADS  Google Scholar 

  99. B.O. Seraphin, N. Bottka: Band structure analysis from electroreflectance studies. Phys. Rev. 145, 628–636 (1966)

    ADS  Google Scholar 

  100. S. Gopalan, P. Lautenschlager, M. Cardona: Temperature dependence of the shifts and broadenings of the critical points in GaAs. Phys. Rev. B 35, 5577–5584 (1987)

    ADS  Google Scholar 

  101. P.B. Allen, M. Cardona: Temperature dependence of the direct gap of Si and Ge. Phys. Rev. B 27, 4760–4769 (1983)

    ADS  Google Scholar 

  102. E. Matatagui, A. Thomson, M. Cardona: Thermoreflectance in semiconductors. Phys. Rev. 176, 954–960 (1968)

    ADS  Google Scholar 

  103. A. Gavini, M. Cardona: Modulated piezoreflectance in semiconductors. Phys. Rev. B 1, 672–682 (1970)

    ADS  Google Scholar 

  104. M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions, NBS Math. Ser. No.44 (US GPO, Washington, DC 1970) Sect. 10

    Google Scholar 

  105. K. Thamarlingham: Optical absorption in the presence of uniform electric field. Phys. Rev. 130, 2204–2206 (1963)

    ADS  Google Scholar 

  106. D.E. Aspnes: Electric field effects on the dielectric constant of solids. Phys. Rev. 153, 972–982 (1967)

    ADS  Google Scholar 

  107. W. Franz: Influence of an electric field on an optical absorption edge (in German). Z. Naturforsch. 13a, 484–489 (1958)

    ADS  Google Scholar 

  108. L.V. Keldysh: Effect of a strong electric field on the optical properties of insulating crystals. Sov. Phys. — JETP 34, 788–790 (1958)

    Google Scholar 

  109. J.P. Estrera, W.M. Duncan, R. Glosser: Complex Airy analysis of photoreflec-tance spectra for III–V semiconductors. Phys. Rev. B 49, 7281–7294 (1994)

    ADS  Google Scholar 

  110. D.E. Aspnes, A.A. Studna: Schottky barrier electroreflectance: Application to GaAs. Phys. Rev. B 7, 4605–4625 (1973)

    ADS  Google Scholar 

  111. D.E. Aspnes: Schottky barrier electroreflectance of Ge: Non-degenerate and optically degenerate critical points. Phys. Rev. B 12, 2297–2310 (1975)

    ADS  Google Scholar 

  112. M. Kuball: Effects of hydrogen exposure, doping, and electric fields on the properties of GaAs surfaces. Dissertation, University of Stuttgart (1995)

    Google Scholar 

  113. E. Gharhamani, D.J. Moss, J.E. Sipe: Linear and nonlinear optical properties of (GaAs)m/(AlAs)n superlattices. Phys. Rev. B 43, 9269–9272 (1991)

    ADS  Google Scholar 

  114. D.F. Blossey: Wannier excitation in an electric field: II. Electroabsorption in direct-band-gap solids. Phys. Rev. B 3, 1382–1391 (1971)

    ADS  Google Scholar 

  115. J.S. Kline, F.H. Pollak, M. Cardona: Electroreflectance in the Ge-Si alloys. Helv. Phys. Acta 41, 968–976 (1968)

    Google Scholar 

  116. M. Cardona, K.L. Shaklee, F.H. Pollak: Electroreflectance at a semiconductor-electrolyte interface. Phys. Rev. 154, 696–720 (1967)

    ADS  Google Scholar 

  117. J.G. Gay: Screening of excitons in semiconductors. Phys. Rev. B 4, 2567–2575 (1971)

    ADS  Google Scholar 

  118. C. Parks, A.K. Ramdas, S. Rodriguez, K.M. Itoh, E.E. Haller: Electronic band structure of isotopically pure Ge: Modulated transmission and reflectivity study. Phys. Rev. B 49, 14244–14250 (1994)

    ADS  Google Scholar 

  119. S. Zollner, M. Cardona, S. Gopalan: Isotope and temperature shifts of direct and indirect band gaps in diamond-type semiconductors. Phys. Rev. B 45, 3376–3385 (1992)

    ADS  Google Scholar 

  120. X. Yin, X. Guo, F.H. Pollak, Y. Chan, P.A. Mantau, P.D. Kirchner, G.D. Petit, J.M. Woodal: Photoreflectance study of the surface Fermi level at a (001) n- and p-type GaAs surface. J. Vac. Sci. Technol. A 10, 131–136 (1992)

    ADS  Google Scholar 

  121. I. Kamiya, D.E. Aspnes, L.T. Florez, J.P. Harbison: Reflectance difference spectroscopy on (001) GaAs surfaces in ultrahigh vacuum. Phys. Rev. B 46, 15894–15904 (1992)

    ADS  Google Scholar 

  122. W. Richter: Optical in-situ control during MOVPE and MBE growth. Philos. Trans. R. Soc. (London) A 344, 453–467 (1993)

    ADS  Google Scholar 

  123. M. Cardona, F.H. Pollak, K.L. Shaklee: Electroreflectance in semiconductors. J. Phys. Soc. Jpn. Suppl. 21, 89–94 (1966)

    Google Scholar 

  124. D.E. Aspnes, A.A. Studna: Anisotropics in the above-band-gap optical spectra of cubic semicondutors. Phys. Rev. Lett. 54, 1956–1959 (1985)

    ADS  Google Scholar 

  125. W.L. Mochan, R.G. Barrera: Local field effects on the surface conductivity of adsorbed overlayers. Phys. Rev. Lett. 56, 2221–2224 (1969)

    ADS  Google Scholar 

  126. Y. Chang, D.E. Aspnes: Theory of the dielectric function anisotropy of (001) GaAs (2×1) surface. Phys. Rev. B 41, 12002–12012 (1990)

    ADS  Google Scholar 

  127. D.E. Aspnes: Observation and analysis of epitaxial growth with reflectance-difference spectroscopy. J. Electron. Mater. B 30, 109–119 (1995)

    Google Scholar 

  128. D.R. Penn: Wavenumber-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)

    ADS  MATH  Google Scholar 

  129. M. Cardona: Infrared dielectric constants and ultraviolet optical properties of solids with diamond, zincblende, wurtzite and rocksalt structures. J. Appl. Phys. 36, 2181–2186 (1965)

    ADS  Google Scholar 

  130. P.Y. Yu, M. Cardona: Temperature coefficient of zincblende and diamond-type semiconductors. Phys. Rev. B 2, 3193–3197 (1970)

    ADS  Google Scholar 

  131. M. Cardona: Fresnel reflection and surface plasmons. Am. J. Phys. 39, 1277 (1971)

    ADS  Google Scholar 

  132. M. Cardona: Electronic optical properties of solids, in Solid State Physics, Nuclear Physics and Particle Physics, ed. by I. Saavedra (Benjamin, New York 1968) pp.737–816

    Google Scholar 

  133. P. Wickbold, E. Anastassakis, R. Sauer, M. Cardona: Raman phonon piezospec-troscopy in GaAs: Infrared measurements. Phys. Rev B 35, 1362–1368 (1987)

    ADS  Google Scholar 

  134. J.F. Nye: Physical Properties of Crystals (Oxford Univ. Press, Oxford 1969)

    Google Scholar 

  135. L.A. Shuvalov (ed.): Modern Crystallography IV, Springer Ser. Solid-State Sci., Vol.37 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  136. P. Lautenschlager, P.B. Allen, M. Cardona: Temperature dependence of band gaps in Si and Ge. Phys. Rev. B 31, 2163–2171 (1985)

    ADS  Google Scholar 

  137. Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1984) pp.86–93

    Google Scholar 

  138. J.A. Van Vechten, M. Cardona, D.E. Aspnes, R.M. Martin: Theory of the 3rd-order susceptibility, in Proc. 10th Int’l Conf. on the Physics of Semiconductors, ed. by S.P. Keller, C. Hensel, F. Stern (Nat’l Bureau of Standards, Springfield, VA 1970) pp. 82–86

    Google Scholar 

General Reading

  • Azzam R.M.A., N.M. Bashara: Ellipsometry and Polarized Light (North-Holland, Amsterdam 1977)

    Google Scholar 

  • Bassani F.: Electronic States and Optical Transitions in Solids (Pergamon, London 1975)

    Google Scholar 

  • Burstein A.: Atomic Structure and Properties of Solids (Academic, New York 1973)

    Google Scholar 

  • Greenaway D., G. Harbeke: Optical Properties and Band Structure of Semiconductors (Pergamon, London 1968)

    Google Scholar 

  • Ill’inskii Yu.A., L.V. Keldysh: Electromagnetic Response of Material Media (Plenum, New York 1994)

    Google Scholar 

  • Landau L., I.M. Lifshitz: The Classical Theory of Fields (Addison-Wesley, Reading, MA 1958)

    Google Scholar 

  • Pollak F.H., H. Shen: Modulation Spectrocsopy of Semiconductors, Bulk, Thin Film, Microstructures, Surfaces/Interfaces and Devices. Mater. Sci. Eng. R 10, 275–374 (1993)

    Google Scholar 

  • Palik E.A.: Handbook of Optical Constants (Academic, Orlando, FL 1985)

    Google Scholar 

  • Pankove J.: Optical Processes in Semiconductors (Dover, New York 1971)

    Google Scholar 

  • Tauc J.: The Optical Properties of Solids (Academic, New York 1966)

    Google Scholar 

  • Willardson R.K., A.C. Beer (eds.): Optical Properties of III–V Compounds, Semiconductors, Semimetals, Vol.3 (Academic, New York 1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, P.Y., Cardona, M. (1996). Optical Properties I. In: Fundamentals of Semiconductors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03313-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03313-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61461-6

  • Online ISBN: 978-3-662-03313-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics