Skip to main content

Long-Term Coordinated Changes in the Convective Activity of the North Atlantic

  • Conference paper
Decadal Climate Variability

Part of the book series: NATO ASI Series ((ASII,volume 44))

Abstract

The North Atlantic is a peculiarly convective ocean. The convective renewal of intermediate and deep waters in the Labrador Sea and Greenland/Iceland Sea both contribute significantly to the production and export of North Atlantic Deep Water, thus helping to drive the global thermohaline circulation, while the formation and spreading of 18-degree water at shallow-to-intermediate depths off the US eastern seaboard is a major element in the circulation and hydrographic character of the west Atlantic. For as long as time-series of adequate precision have been available to us, it has been apparent that the intensity of convection at each of these sites, and the hydrographic character of their products have been subject to major interannual change, as shown by Aagaard (1968), Clarke et al (1990), and Meincke et al (1992) for the Greenland Sea, in the OWS BRAVO record from the Labrador Sea, (eg Lazier,1980 et seq.), and at the PANULIRUS / Hydrostation “S” site in the Northern Sargasso off Bermuda (eg Jenkins, 1982, Talley and Raymer, 1982). This paper reviews the recent history of these changes showing that the major convective centres of the Greenland- and Labrador Seas are currently at opposite convective extrema in our postwar record, with vertical exchange at the former site limited to 1000 m or so, but with Labrador Sea convection reaching deeper than previously observed, to over 2300 m. As a result, Greenland Sea Deep Water has become progressively warmer and more saline since the early ‘70’s due to increased horizontal exchange with the Arctic Ocean through Fram Strait, while the Labrador Sea Water has become progressively colder and fresher over the same period through increased vertical exchange; most recently, convection has become deep enough there to reach into the more saline NADW which underlies it, so that cooler, but now saltier and denser LSW has resulted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard, K. 1968. Temperature variations in the Greenland Sea Deep Water. Deep-Sea Res., 15, 281–296.

    Google Scholar 

  • Aagaard, K. 1981. On the deep circulation in the Arctic Ocean. Deep Sea Res., 28, 251–268.

    Article  Google Scholar 

  • Aagaard, K. and E.C. Carmack. 1989. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94, 14485–14498.

    Article  Google Scholar 

  • Aagaard, K., E. Fahrbach, J. Meincke and J.H. Swift. 1991. Saline outflow from the Arctic Ocean: Its contribution to the deep waters of the Greenland, Norwegian and Iceland seas. J. Geophys. Res., 96, 20433–20441.

    Article  Google Scholar 

  • Borovkov V.A. and I.I. Tevs 1991 Oceanographic Conditions in NAFO Subareas 0,1,2 and 3 in 1990. NAFO SCR Doc. 91/11, 20 pp (mimeo)

    Google Scholar 

  • Clarke, R.A., J.H. Swift, J.A. Reid and K.P. Koltermann 1990. The formation of Greenland Sea Deep Water:double diffusion or deep convection? Deep-Sea Res., 37 (9), 1385–1424.

    Article  Google Scholar 

  • Clarke, R.A. and J.C. Gascard. 1983. The formation of Labrador Sea Water. Part I: Large-scale processes. J. Phys. Oceanogr. 13, 1764–1778.

    Article  Google Scholar 

  • Cunningham, S.A. and T.W.N Haine. 1995A Labrador Sea Water in the Eastern North Atlantic. Part I.: A Synoptic Circulation Inferred from a Minimum in Potential Vorticity. J. Phys. Oceanogr.,25 (4), 649–665.

    Google Scholar 

  • Cunningham S.A. and T.W.N. Haine, 1995E Labrador Sea Water in the Eastern North Atlantic. Part II: Mixing dynamics and the Advective-Diffusive Balance. J. Phys. Oceanogr.,25 (4), 666–678.

    Google Scholar 

  • Dickson R.R. and J. Brown., 1994. The production of North Atlantic Deep Water: Sources, rates and pathways. J. Geophys. Res.,99, C6, 12319–12341.

    Google Scholar 

  • Dickson, R.R. and K.M. Brander, 1993. Effects of a changing windfield on cod stocks of the North Atlantic. Fish. Oceanog.2, 124–153. ICES mar. Sci. Symp., 198: 271–279.

    Google Scholar 

  • Dickson, R.R. and J. Namias. 1976. North American Influences on the Circulation and Climate of the North Atlantic Sector. Mon.Wea. Rev. 104 (10), 1256–1265.

    Article  Google Scholar 

  • Dickson, R.R., J. Meincke, S.-A. Malmberg and A. J. Lee. 1988. The “Great Salinity Anomaly” in the northern North Atlantic 1968–1982. Prog. Oceanogr., 20, 103–151.

    Article  Google Scholar 

  • Dickson, R.R., H.H. Lamb, S.A. Malmberg and J.M. Colebrook. 1975. Climatic reversal in northern North Atlantic. Nature, Lond., 256, 479–482.

    Article  Google Scholar 

  • Drinkwater, K.F. 1994. Environmental Changes in the Labrador Sea and some Effects on Fish Stocks. ICES CM 1994/MINI:4, 19 pp, (mimeo)

    Google Scholar 

  • Drinkwater, K.F. and E.G. Pettipas, 1993. Climate Data for the Northwest Atlantic: Surface Windstresses off Eastern Canada, 1946–1991. Can. Data Rept. of Hydrog. and Ocean Sci., 123, 130 pp

    Google Scholar 

  • Ellett, D.J. 1993. Transit times to the NE Atlantic of Labrador Sea water signals. ICES CM 1993/C:25 11pp + 6 figs (mimeo)

    Google Scholar 

  • Gammelsrod, T., S. Osterhus, and O. Godoy, 1992. Decadal variations of ocean climate in the Norwegian Sea observed at Ocean Station MIKE (66N 2E). ICES mar. Sci. Symp., 195:68–75

    Google Scholar 

  • GSP Group 1990. The Greenland Sea Project - a venture toward improved understanding of the ocean’s role in climate. EOS, 71: 750–751, 754–755.

    Google Scholar 

  • Hayden, B.P. 1981. Secular variation in the Atlantic coast extratropical cyclones. Mon. Wea. Rev., 109, 159–167.

    Article  Google Scholar 

  • Jenkins, W.J. 1982. On the climate of a subtropical gyre: decade timescale variations in water mass renewal in the Sargasso Sea. J. Mar. Res., 40. (suppl.), 265–290.

    Google Scholar 

  • Jónsson, S. 1991. Seasonal and interannual variability of wind stress curl over the Nordic Seas. J. Geophys. Res., 96: C2, 2649–2659.

    Google Scholar 

  • Koltermann, K.P. and A. Sy 1994. Western North Atlantic cools at intermediate depths. WOCE Newsletter, 15, 5–6.

    Google Scholar 

  • Killerich, A.B. 1945. On the hydrography of the Greenland Sea. Medd. Grönl. 144, 1–63.

    Google Scholar 

  • Lazier, J., M. Rhein, A. Sy and J. Meincke, in press. Surprisingly Rapid Renewal of Labrador Sea Water in the Irminger Sea.

    Google Scholar 

  • Lazier, J.R.N. 1995. The Salinity Decrease in the Labrador Sea over the Past Thirty Years. In: Natural Climate Variability on Decade-to-Century Time Scales. D. G. Martinson, K. Bryan, M. Ghil, M. M. Hall, T. M. Karl, E.S Sarachik, S. Sorooshian, and L. D. Talley, (eds.). National Academy Press, Washington, D.C., pp. m-n.

    Google Scholar 

  • Lazier, J.R.N. 1980. Oceanographic conditions at Ocean Weather Ship Bravo, 1964–1974. Atmos. Ocean, 18, 227–238.

    Article  Google Scholar 

  • Lazier, J.R.N. 1988. Temperature and salinity changes in the deep Labrador Sea, 1962–1986. Deep-Sea Res., 35, 1247–1253.

    Article  Google Scholar 

  • Lazier, J.R.N. and R.M. Gershey. 1991. AR7W: Labrador Sea Line–July 1990. WOCE Newsletter, 11, 5–7.

    Google Scholar 

  • Malmberg, Sv.-A. 1983. Hydrographic investigations in the Iceland and Greenland Seas in late winter 1971 - “Deep Water Project.”, Jökull, 33:133–140.

    Google Scholar 

  • Mccartney, M.S., L.V. Worthingon and M.E. Raymer. 1980. Anomalous water mass distributions at 55W in the North Atlantic in 1977. J. Mar. Res., 38 (1), 147–172.

    Google Scholar 

  • Meincke, J. 1990. The Greenland Sea interannual variability. ICES CM 1990/C:17, 6pp +8 figs. (mimeo).

    Google Scholar 

  • Meincke, J. and B. Rudels. 1995. Greenland Sea Deep Water: A balance between convection and advection. Nordic Seas Symposium, Hamburg March 1995. Extended Abstr. Vol., U Hamburg, 143–148.

    Google Scholar 

  • Meincke, J., S. Jonsson and J.H. Swift. 1992. Variability of convective conditions in the Greenland Sea. ICES mar. SCI. Symp. 195, 32–39

    Google Scholar 

  • Michaels, F.A., A.H. Knap, R.L. Dow, K. Gundersen, R.J. Johnson, J. Sorensen, A. Close, G.A. Knauer, S.E. Lohrenz, V.A. Asper, M. Tuel and R Bidigare. (1992) Seasonal patterns of ocean biogeochemistry at the UK JGOFS Bermuda Atlantic Time-series Study site. pp 1013–1038. In: T.M. Powell & J.H. Steele (Eds.). Ecological Time Series. Chapman and Hall, N.Y. 491 pp

    Google Scholar 

  • Midttun, L. 1985. Formation of dense bottom water in the Barents Sea. Deep-Sea Res., 23 1233–1241.

    Article  Google Scholar 

  • Nansen, F. 1906. Northern Waters: Captain Roald Amundsen’s oceanographic observations in the Arctic seas in 1901. Videnskabs-Selskabets Skrifter, I. Mathematisk-Naturv. Klasse,No. 3, 145 pp.

    Google Scholar 

  • Osterhus. S. & T. Gammelsrod, in press. The Abyss of the Nordic Seas is Warming. Nature. Lond.

    Google Scholar 

  • Read J.F. and W.J. Gould 1992. Cooling and freshening of the subpolar North Atlantic Ocean since the 1960’s. Nature Loud., 369, 55–57.

    Article  Google Scholar 

  • Rhines, P. 1994. Climate change in the Labrador Sea, its Convection and Circulation. Pp 85–96 In: Atlantic Climate Change Program: Proceedings of the PI’s meeting, Princeton, May 9–11, 1994.

    Google Scholar 

  • Rodewald, M. 1972. Temperature conditions in the NorthAtlantic during the decade 1960–70. ICNAF Spec. Publ. No 8, Symp on Environmental Condits in NW Atlantic, 1960–69, 9–34.

    Google Scholar 

  • Rogers, J.C. 1984. The Association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon Wea. Rev., 112, 1999–2015.

    Article  Google Scholar 

  • Rudels, B. and D. Quadfasel. 1991. Convection and deep water formation in the Arctic Ocean- Greenland Sea system. J. Mar. Sys. 2 (3/4), 435–450.

    Google Scholar 

  • Saelen, O. H. 1988. On the Exchange of Bottom Water Between the Greenland and Norwegian Seas. Geophys. Inst. Univ. Bergen Rept. 67, 14 pp + 8 figs.

    Google Scholar 

  • Scherhag, R. 1970. Die gegenwartige Abkuhlung der Arktis. Beil z. Berliner Wetterkt. 105/70 so 31/70.

    Google Scholar 

  • Schlosser, P., D. Wallace, J. Bullister, G. Boenisch and J. Blindheim. 1994. New results from long-term tracer observations in the Greenland/Norwegian and Labrador seas. Pp 129–133 In: Atlantic Climate Change Program: Proceedings of P.I.’s meeting, Princeton, May 9–11, 1994

    Google Scholar 

  • Schlosser, P., G. Bonisch, M. Rhein and R. Bayer. 1991. Reduction of deepwater formation in the Greenland Sea during the 1980’s: Evidence from tracer data. Science, 251, 1054–1056.

    Article  Google Scholar 

  • Smith, S.D. and F.W. Dobson, 1984. The heat budget at Ocean Weather Station BRAVO. Atmos-ocean, 22, 1–22.

    Article  Google Scholar 

  • Swift, J.H., and K.P. Koltermann, 1988. The origin of Norwegian Sea Deep Water. J. Geophys. Res., 93, 3563–3569

    Article  Google Scholar 

  • Swift, J.H., T. Takahashi and H.D. Livingston. 1983. The contribution of the Greenland and Barents Seas to the deep water of the Arctic Ocean, J. Geophys. Res., 88, 5981–5986.

    Article  Google Scholar 

  • Sy, A., K.P. Koltermann, and U. Paul. 1994. Ausbreitung und Veranderlichkeit des Labradorseewassers. pp 44–50 In: Anon, WOCE Status Rept., Germany, 1994

    Google Scholar 

  • Talley, L.D. and M.E. Raymer. 1982. Eighteen Degree Water variability. J. Mar. Res., 40 (Supp.), 757–775.

    Google Scholar 

  • Talley, L.D., and M.S. Mccartney. 1982. Distribution and circulation of Labrador Sea Water. J. Phys. Oceanogr., 12, 1189–1205.

    Article  Google Scholar 

  • Top, Z., W.B. Clarke and W.J. Jenkins, 1987. Tritium and primordial 3-He in the North Atlantic: a study in the region of Charlie-Gibbs fracture Zone. Deep-Sea Res., 34 (2) 287–298.

    Article  Google Scholar 

  • Wallace, D.W.R. and J.R.N Lazier 1988. Anthropogenic Chlorofluoromethanes in newly formed Labrador Sea Water. Nature, Lond., 332, 61590, 61–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dickson, R., Lazier, J., Meincke, J., Rhines, P. (1996). Long-Term Coordinated Changes in the Convective Activity of the North Atlantic. In: Anderson, D.L.T., Willebrand, J. (eds) Decadal Climate Variability. NATO ASI Series, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03291-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03291-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08258-0

  • Online ISBN: 978-3-662-03291-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics