Skip to main content

Spectral Methods: What They Can and Cannot do for Climatic Time Series

  • Conference paper
Decadal Climate Variability

Part of the book series: NATO ASI Series ((ASII,volume 44))

Abstract

The analysis of time series — uni- or multivariate — is one of the high roads to our understanding of climatic variability. This classical field of study has recently been revitalized by the discovery and implementation of a number of new methodologies for extracting useful information from time series, as well as for interpreting the information so obtained in terms of dynamical systems theory. In this chapter, we describe the connections between time-series analysis and nonlinear dynamics, discuss signal-to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to a well-known climatic time series, the Southern Oscillation Index. Open questions and further prospects conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike H. (1969) Fitting autoregressive models for prediction. Ann. Inst. Statist. Math. 21: 243–247

    Article  Google Scholar 

  • Akaike H. (1974) A new look at the statistical model identification. IEEE Trans. Autom. Control 19:716–723

    Google Scholar 

  • Allen M. R., Robertson A. W. (1996) Distinguishing modulated oscillations from coloured noise in multivariate datasets. Clini. Dyn. (submitted)

    Google Scholar 

  • Allen M., Smith L. A. (1994) Investigating the origins and significance of low-frequency modes of climate variability. Geophys. Res. Lett. 21: 883–886

    Article  Google Scholar 

  • Allen M. R., Smith L. A. (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of coloured noise. J. Clim. (to appear)

    Google Scholar 

  • Arnold V. I. (1973) Ordinary Differential Equations. MIT Press, Cambridge MA London England

    Google Scholar 

  • Arnold V. I. (1983) Geometrical Methods in the Theory of Ordinary Dif- ferential Equations. Springer-Verlag, New York Heidelberg Berlin

    Book  Google Scholar 

  • Benoist J. P. (1986) Analyse Spectrale de Signaux Glaciologiques: Etude des Glaces Sédimentaires Déposées à Dome C, Morphologie du Lit d’un Glacier. Thèse d’Etat USMT Grenoble

    Google Scholar 

  • Birchfield G. E., Ghil M. (1993) Climate evolution in the Pliocene-Pleistocene as seen in deep sea 8180 records and in simulations: internal variability versus orbital forcing. J. Geophys. Res. 98(D6): 1038510399

    Google Scholar 

  • Blackman R. B., Tukey J. W. (1958) The Measurement of Power Spectra From The Point of View of Communication Engineering. Dover, New York

    Google Scholar 

  • Box G. E. P., Jenkins G. M. (1970) Time Series Analysis, Forecasting and Control. Holden-Day, San Francisco

    Google Scholar 

  • Broomhead D. S., King G. P. (1986a) Extracting qualitative dynamics from experimental data. Physica D20: 217–236

    Google Scholar 

  • Broomhead D. S., King G. P. ( 1986 b) On the qualitative analysis of experimental dynamical systems. In: Sarkar S. (ed.) Nonlinear Phenomena and Chaos. Adam Hilger, Bristol pp 113–144

    Google Scholar 

  • Burg J. P. (1967) Maximum entropy spectral analysis. In: 37th Ann. Intern. Meeting. Soc. Explor. Geophys., Oklahoma City, Oklahoma

    Google Scholar 

  • Chatfield C. (1984) The Analysis of Time Series: An Introduction. 3 edn Chapman and Hall, New York

    Google Scholar 

  • Chen F., Ghil M. (1995) Interdecadal variablity of the thermohaline circulation and high-latitude surface fluxes. J. Phys. Oceanogr. 25(11):25472568

    Google Scholar 

  • Chen F., Ghil M. (1996) Interdecadal variability in a hybrid coupled ocean-atmosphere model. J. Phys. Oceanogr. (in press)

    Google Scholar 

  • Childers D. G. (ed.) (1978) Modern Spectrum Analysis. IEEE Press, New York

    Google Scholar 

  • Constantin P., Foias C., Nicolaenko B., Témam R. (1989) Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer-Verlag, New York

    Google Scholar 

  • Delworth T., Manabe S., Stouffer R. (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J. Clim. 6:1993–2011

    Google Scholar 

  • Dettinger M. D., Ghil M., Strong C. M., Weibel W., Yiou P. (1995a) Software expedites singular-spectrum analysis of noisy time series. Eos Trans. AGU 76(2):12, 20, 21 (available on the World Wide Web at http://www.atmos.ucla.edu/)

    Google Scholar 

  • Dettinger M. D., Ghil M., Keppenne C. (1995b) Interannual and Interdecadal variability in United States surface-air temperatures, 1910–87. Clim. Change 31:35–66

    Google Scholar 

  • Drazin P. G., King G. P. (eds.) (1992) Interpretation of Time Series from Nonlinear Systems (Proc. of the IUTAM Symposium and NATO Advanced Research Workshop on the Interpretation of Time Series from Nonlinear Mechanical Systems). University of Warwick, England North-Holland

    Google Scholar 

  • Eckmann J.-P. (1981) Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys. 53:643–654

    Google Scholar 

  • Eckmann J.-P., Ruelle D. (1985) Ergodic theory of chaos and strange at-tractors. Rev. Mod. Phys. 57(3):617–656 and 57:1115

    Google Scholar 

  • Farmer J. D., Ott E., Yorke J. A. (1983) The dimension of chaotic attractors. Physica D 7:153–180

    Google Scholar 

  • Flandrin P. (1993) Temps-fréquence. Hermes, Paris

    Google Scholar 

  • Ghil M. (1994) Cryothermodynamics: the chaotic dynamics of paleoclimate. Physica D77:130–159

    Google Scholar 

  • Ghil M., Childress S. (1987) Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics. Springer-Verlag, New York

    Google Scholar 

  • Ghil M., Mo K. C. (1991a) Intraseasonal oscillations in the global atmosphere. Part I: Northern hemisphere and tropics. J. Atmos. Sci. 48(5):752–779

    Google Scholar 

  • Ghil M., Mo K. C. (1991b) Intraseasonal oscillations in the global atmosphere. Part II: Southern hemisphere. J. Atmos. Sci. 48(5):780–790

    Google Scholar 

  • Ghil M., Vautard R. (1991) Interdecadal oscillations and the warming trend in global temperature time series. Nature 350(6316):324–327

    Google Scholar 

  • Ghil M., Kimoto M., Neelin J. D. (1991) Nonlinear dynamics and predictability in the atmospheric sciences. Rev. Geophys. 36 Supplement (U.S. National Report IUGG, 1987–91):46–55

    Google Scholar 

  • Gleick J. (1987) Chaos: Making a New Science. Viking, New York

    Google Scholar 

  • Golub G. H., Van Loan C. F. (1983) Matrix Computations. John Hopkins Univ. Press

    Google Scholar 

  • Grassberger P., Procaccia I. (1983) Measuring the strangeness of strange attractors. Physica D9:189–208

    Google Scholar 

  • Guckenheimer J., Holmes P. (1983) Nonlinear Oscillations, Dynamical Sys-tems and Bifurcations of Vector Fields. Springer-Verlag, New York

    Google Scholar 

  • Hannan E. J. (1960) Time Series Analysis. Methuen, New York Hasselmann K. (1976) Stochastic climate models. Tellus 6:473–485

    Google Scholar 

  • Haykin S., Kesler S. (1983) Prediction-error filtering and maximum-entropy spectral estimation. In: Haykin S. (ed.) Nonlinear Methods of Spectral Analysis. Vol 34 of Topics in Applied Physics. Springer Verlag, Berlin pp 9–72

    Google Scholar 

  • Jenkins G. M., Watts D. G. (1968) Spectral Analysis and its Applications. Holden-Day, San Francisco

    Google Scholar 

  • Jiang N., Neelin D., Ghil M. (1995) Quasi-quadrennial and quasi-biennial variability in the equatorial pacific. Clim. Dyn. 12: 101–112

    Article  Google Scholar 

  • Jin F.-F., Neelin J. D., Ghil M. (1994) El Ninó on the Devil’s staircase: Annual subharmonic steps to chaos. Science 264: 70–72

    Article  Google Scholar 

  • Jin F.-F., Neelin J. D., Ghil M. (1996) El Nino/Southern Oscillation and the annual cycle: Subharmonic frequency-locking and aperiodicity. Physica D (accepted)

    Google Scholar 

  • Kaplan J. L., Yorke J. A. (1979) Chaotic behavior of multidimensional difference equations. In: Peitgen H. O., Walther H. O. (eds.) Functional Differential Equations and Approximation of Fixed Points. Vol 730 of Lecture Notes in Mathematics. Springer-Verlag, New York pp 228–237

    Google Scholar 

  • Kay S. M. (1988) Modern Spectral Analysis: Theory and Applications. Prentice-Hall

    Google Scholar 

  • Kendall M., Stuart A. (1979) The Advanced Theory of Statistics. Vol 2 4 edn Macmillan, New York

    Google Scholar 

  • Keppenne C. L., Ghil M. (1992) Adaptive filtering and prediction of the Southern Oscillation Index. J. Geophys. Res. 97: 20449–20454

    Article  Google Scholar 

  • Keppenne C. L., Ghil M. (1993) Adaptive filtering and prediction of noisy multivariate signals: An application to subannual variability in atmospheric angular momentum. Intl. J. Bifurcation and Chaos 3: 625–634

    Article  Google Scholar 

  • Kimoto M., Ghil M. (1993) Multiple flow regimes in the Northern Hemisphere winter. Part II: Sectorial regimes and preferred transitions. J. Atmos. Sci. 50: 2645–2673

    Article  Google Scholar 

  • Kimoto M., Ghil M., Mo K. C. (1991) Spatial structure of the extratropical 40-day oscillation. In: Proc. 8th Conf. Atmos. Oceanic Waves and Stability. Amer. Meteorol. Soc., Boston, MA pp 115–116

    Google Scholar 

  • Kumaresan R., Tufts D. W. (1980) Data-adaptive principal component signal processing. In: Proc. Conf. Decision and Control. IEEE, Albuquerque pp 949–954

    Google Scholar 

  • Kuo C., Lindberg C., Thomson D. J. (1990) Coherence established between atmospheric carbon dioxide and global temperature. Nature 343: 709713

    Google Scholar 

  • Lasota A., Mackey M. C. (1994) Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Vol 97 of Applied Mathematical Sciences 2 edn Springer-Verlag, New York

    Google Scholar 

  • Lau K. M., Chan P. H. (1985) Aspects of the 40–50 day oscillation during the northern winter as inferred from outgoing longwave radiation. Mon. Wea. Rev. 113: 1889–1909

    Article  Google Scholar 

  • Legras B., Ghil M. (1985) Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci. 42: 433–471

    Article  Google Scholar 

  • Lichtenberg A. J., Lieberman M. A. (1991) Regular and Chaotic Dynamics. Springer-Verlag, New York

    Google Scholar 

  • Lorenz E. N. (1963) Deterministic nonperiodic flow. J. Atmos. Sci. 20: 130141

    Google Scholar 

  • Lorenz E. N. (1969) Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 26: 636–646

    Article  Google Scholar 

  • MacDonald G. J. (1989) Spectral analysis of time series generated by nonlinear processess Rev. Geophys. 27: 449–469

    Article  Google Scholar 

  • Madden R. A., Julian P. R. (1971) Detection of a 40–50 day oscillation in the zonal wind in the Tropical Pacific. J. Atmos. Sci. 28: 702–708

    Article  Google Scholar 

  • Madden R. A., Julian P. R. (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. 29: 1109 1123

    Google Scholar 

  • Mandelbrot B. (1982) The Fractal Geometry of Nature. 2nd edn Freeman, San Francisco

    Google Scholar 

  • Maíié R. (1981) On the dimension of the compact invariant sets of certain non-linear maps. In: Rand D. A., Young L.-S. (eds.) Dynamical Systems and Turbulence. Vol 898 of Lecture Notes in Mathematics. Springer, Berlin pp 230–242

    Google Scholar 

  • Mann M. E., Park J. (1995) Global-scale modes of surface temperature variability on interannual to century timescales. J. Geophys. Res. 99 (D12): 25819–25833

    Article  Google Scholar 

  • Mann M. E., Lees J. M. (1996) Robust estimation of background noise and signal detection in climatic time series. Clim. Change (in press)

    Google Scholar 

  • Mann M. E., Park J., Bradley R. S. (1995) Global interdecadal and century-scale climate oscillations during the past five centuries. Nature 378: 266–270

    Article  Google Scholar 

  • Marcus S. L., Ghil M., Dickey J. 0. (1994) The extratropical 40-day oscillation in the UCLA general circulation model. Part I: Atmospheric angular momentum. J. Atmos. Sci. 51: 1431–1446

    Article  Google Scholar 

  • Marcus S. L., Ghil M., Dickey J. 0. (1996) The extratropical 40-day oscillation in the UCLA general circulation model. Part II: Atmospheric angular momentum. J. Atmos. Sci. (accepted)

    Google Scholar 

  • Meyers S. D., Kelly B. G., O’Brien J. J. (1993) An introduction to wavelet analysis in oceanography and meteorology: with application to the dispersion of Yanai waves. Mon. Wea. Rev. 121: 2858–2866

    Article  Google Scholar 

  • Mitchell J. M. (1976) An overview of climatic variability and its causal mechanisms. Quatern. Res. 6: 481–493

    Article  Google Scholar 

  • Packard N. H., Crutchfield J. P., Farmer J. D., Shaw R. S. (1980) Geometry from a time series. Phys. Rev. Lett. 45: 712–716

    Article  Google Scholar 

  • Plaut G., Ghil M., Vautard R. (1995) Interannual and interdecadal variability in 335 years of Central England temperatures. Science 268: 710–713

    Article  Google Scholar 

  • Park J., Maasch K. A. (1993) Plio-Pleistocene time evolution of the 100-kyr cycle in marine paleoclimate records. J. Geophys. Res. 98: 447–461

    Article  Google Scholar 

  • Penland C., Ghil M., Weickmann K. (1991) Adaptive filtering and maximum entropy spectra, with application to changes in atmospheric angular momentum. J. Geophys. Res. 96 (D12): 22659–22671

    Article  Google Scholar 

  • Percival D. B., Walden A. T. (1993) Spectral Analysis for Physical Applications. Cambdridge University Press, Cambridge UK

    Book  Google Scholar 

  • Pike E. R., McWhirter J. G., Bertero M., de Mol C. (1984) Generalized information theory for inverse problems in signal processing. Proc. IEE 131: 660–667

    Google Scholar 

  • Plaut G., Vautard R. (1994) Spells of low-frequency oscillations and weather regimes in the northern hemisphere. J. Atmos. Sci. 51(2): 210236

    Google Scholar 

  • Preisendorfer R. W. (1988) Principal Component Analysis in Meteorology and Oceanography. Elsevier, Amsterdam

    Google Scholar 

  • Press W. H., Flannery B. P., Teukolski S. A., Vettering W. T. (1988) Numerical Recipes: The Art of Scientific Computing. Cambridge University Press

    Google Scholar 

  • Quinn T M., Taylor F. W., Crowley T. J. (1993) A 173 year stable isotope record from a tropical South Pacific coral Quat. Sci. Rev. 12:407–418

    Google Scholar 

  • Quon C., Ghil M. (1995) Multiple equilibria and stable oscillations in thermosolutal convection at small aspect ratio. J. Fluid Mech. 291:33–56

    Google Scholar 

  • Rahmstorf S. (1995) Bifurcation of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378:145–149

    Google Scholar 

  • Rasmusson E. M., Wang X., Ropelewski C. F. (1990) The biennial component of ENSO variability. J. Mar. Syst. 1:71–96

    Google Scholar 

  • Robertson A. W., Ma C.-C., Mechoso C. R., Ghil M. (1995a) Simulation of the Tropical-Pacific climate with a coupled ocean-atmosphere general circulation model. Part I: The seasonal cycle. J. Clim. 8:1178–1198

    Google Scholar 

  • Robertson A. W., Ma C.-C., Ghil M., Mechoso C. R. (1995 b) Simulation of the Tropical-Pacific climate with a coupled ocean-atmosphere general circulation model. Part II: Interannual variability. J. Clim. 8:11991216

    Google Scholar 

  • Rögnvaldsson O. E. (1993) Spectral estimation using the multi-taper method. Technical Report RH-13–13 Science Institute, U. of Iceland Reykjavik

    Google Scholar 

  • Roux J. C., Rossi A., Bachelart S., Vidal C. (1980) Representation of a strange attractor from an experimental study of chemical turbulence. Phys. Lett. A 77:391–393

    Google Scholar 

  • Ruelle D. (1981) Small random perturbations of dynamical systems and the definition of attractors. Commun. Math. Phys. 82:137–151

    Google Scholar 

  • Ruelle D. (1990) Deterministic chaos: the science and the fiction. Proc. Roy Soc. London, Ser. A 427:241–248

    Google Scholar 

  • Ruelle D., Takens F. (1971) On the nature of turbulence. Commun. Math. Phys. 20:167–192 and 23:343–344

    Google Scholar 

  • Sauer T., Yorke J. A., Casdagli M. (1991) Embedology. J. Stat. Phys. 65: 579–616

    Article  Google Scholar 

  • Shannon C. E. (1949) Communication in the presence of noise. Proc. I.R.E. 37: 10–21

    Article  Google Scholar 

  • Slepian S. (1978) Prolate spheroidal wave functions, Fourier analysis and uncertainty-V: The discrete case. Bell. Sys. Tech. J. 57: 1371–1430

    Google Scholar 

  • Smale S. (1967) Differentiable dynamical systems. Bull. Amer. Math. Soc. 73: 199–206

    Article  Google Scholar 

  • Strong C. M., Jin F.-F., Ghil M. (1993) Intraseasonal variability in a barotropic model with seasonal forcing. J. Atmos. Sci. 50: 2965–2986

    Article  Google Scholar 

  • Strong C. M., Jin F.-F., Ghil M. (1995) Intraseasonal oscillations in a barotropic model with annual cycle, and their predictability. J. Atmos. Sci. 52: 2627–2642

    Article  Google Scholar 

  • Takens F. (1981) Detecting strange attractors in turbulence. In: Rand D. A., Young L.-S. (eds.) Dynamical Systems and Turbulence. Vol 898 of Lecture Notes in Mathematics. Springer, Berlin pp 366–381

    Google Scholar 

  • Témam R. (1988) Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York

    Book  Google Scholar 

  • Thomson D. J. (1982) Spectrum estimation and harmonic analysis. IEEE Proc. 70 (9): 1055–1096

    Article  Google Scholar 

  • Thomson D. J. (1990a) Time series analysis of Holocene climate data. Phil. Trans. R. Soc. Lond. A 330: 601–616

    Article  Google Scholar 

  • Thomson D. J. (1990 b) Quadratic-inverse spectrum estimates: applications to palaeoclimatology. Phil. Trans. R. Soc. Lond. A 332: 539–597

    Google Scholar 

  • Tziperman E., Stone L., Cane M. A., Jarosh H. (1994) El Nino chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science 264: 72–74

    Article  Google Scholar 

  • Unal Y. S., Ghil M. (1995) Interannual and interdecadal oscillation patterns in sea level. Clim. Dyn. 11: 255–278

    Google Scholar 

  • Vautard R., Ghil M. (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D35: 395–424

    Google Scholar 

  • Vautard R., Yiou P., Ghil M. (1992) Singular spectrum analysis: a toolkit for short noisy chaotic signals. Physica D58: 95–126

    Google Scholar 

  • Weare B. C., Nasstrom J. N. (1982) Examples of extended empirical orthogonal function analyses. Mon. Wea. Rev. 110: 784–812

    Article  Google Scholar 

  • Weaver A. J., Marotzke J., Cummins P F., Sarachik E. S. (1993) Stability and variability of the thermohaline circulation. J. Phys. Oceanogr. 23: 39–60

    Article  Google Scholar 

  • Whitney B. (1936) Differentiable manifolds. Ann. Math. 37: 645–680

    Article  Google Scholar 

  • Wiggins S. (1988) Global Bifurcations and Chaos (Analytical Methods). Springer-Verlag, New York

    Book  Google Scholar 

  • Yiou P. (1994) Dynamique du Paléoclimat: Des Données et des Modèles. PhD thesis Université Pierre et Marie Curie Paris 6

    Google Scholar 

  • Yiou P., Genthon C., Jouzel J., Ghil M., Le Treut H., Barnola J. M., Lorius C., Korotkevitch Y. N. (1991) High-frequency paleovariability in climate and in CO2 levels from Vostok ice-core records. J. Geophys. Res. 96 (B12): 20365–20378

    Article  Google Scholar 

  • Yiou P., Ghil M., Jouzel J., Paillard D., Vautard R. (1994) Nonlinear variability of the climatic system, from singular and power spectra of Late Quaternary records. Clim. Dyn. 9: 371–389

    Google Scholar 

  • Yiou P., Jouzel J., Johnsen S., Rögnvaldsson O. E. (1995) Rapid oscillations in Vostok and GRIP ice cores. Geophys. Res. Lett. 22(16): 2179–2182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghil, M., Yiou, P. (1996). Spectral Methods: What They Can and Cannot do for Climatic Time Series. In: Anderson, D.L.T., Willebrand, J. (eds) Decadal Climate Variability. NATO ASI Series, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03291-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03291-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08258-0

  • Online ISBN: 978-3-662-03291-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics