Spatial Evolution of Automata in the Prisoner’s Dilemma

  • Oliver Kirchkamp
Conference paper


In this paper we will discuss a model which uses an evolutionary approach within a spatial model. We will concentrate on simple strategic situations: prisoners’ dilemmas and coordination games. For these games we want to study conditions that lead to cooperation and coordination. Can players sustain cooperation in prisoners’ dilemmas? Does the introduction of repeated game strategies affect the amount of cooperation in prisoners’ dilemmas? What happens if players’ actions and learning decisions are either synchronous or asynchronous? Will all strategies that survive in equilibrium achieve equal payoffs? How do players coordinate in coordination games?


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashlock, D., Stanley, E.A., and Tesfatsion, L. (1994): “Iterated Prisoner’s Dilemma with Choice and Refusal of Partners,” in Artificial Life III, ed. by C.G. Langton, no. XVII in SFI Studies in the Sciences of Complexity, pp. 131 —167. Addison-Wesley.Google Scholar
  2. Axelrod, R. (1984): The evolution of cooperation. Basic Books, New York.Google Scholar
  3. Ellison, G. (1993), G. (1993): “Learning, Local Interaction, and Coordination,” Econometrica, 61,1047— 1071.Google Scholar
  4. Eshel, I., Samuelson, L., and Shaked, A. (1996): `Altruists, Egoists and Hooligans in a Local Interaction Model,” Tel Aviv University and University of Bonn.Google Scholar
  5. Glance, N.S., and Huberman, B.A. (1993): “Evolutionary games and computer simulations,” Proceedings of the National Academy of Sciences, 90, 7716–7718.CrossRefGoogle Scholar
  6. Harsanyi, J.C., and Selten, R. (1988): A General Theory of Equilibrium Selection in Games. The MIT Press, Cambridge, Massachusetts.Google Scholar
  7. Hegselmann, R. (1994): “Zur Selbstorganisation von Solidarnetzwerken unter Ungleichen,” in Wirtschaftsethische Perspektiven I, ed. by K. Homann, no. 228/1 in Schriften des Vereins für Socialpolitik, Gesellschaft für Wirtschafts-und Sozialwissenschaften, Neue Folge, pp. 105–129. Duncker & Humblot, Berlin.Google Scholar
  8. Hotelling, H. (1929): “Stability in Competition,” Economic journal, 39, 41–57.CrossRefGoogle Scholar
  9. Kandori, M., Mailath, G.G., and Rob, R. (1993): “Learning, Mutation, and Long Run Equilibria in Games,” Econometrica, 61, 29–56.CrossRefGoogle Scholar
  10. Kirchkamp, O. (1995): “Asynchronous Evolution of Pairs, How spatial evolution leads to inequality,” Discussion Paper B-329, SFB 303, Rheinische Friedrich Wilhelms Universität Bonn.Google Scholar
  11. Kirchkamp, O., and Schlag, K.H. (1995): “Endogenous Learning Rules in Social Networks,” Rheinische Friedrich Wilhelms Universität Bonn, Mimeo.Google Scholar
  12. May, R.M., and Nowak, M.A. (1992): “Evolutionary Games and Spatial Chaos,” Nature, 359, 826–829.CrossRefGoogle Scholar
  13. May, R.M., and Nowak, M.A. (1993): “The Spatial Dilemmas of Evolution,” International Journal of Bifurcation and Chaos, 3, 35–78.CrossRefGoogle Scholar
  14. Maynard Smith, J., and Price, G.R. (1973): “The Logic of Animal Conflict,” Nature, 273, 15–18.CrossRefGoogle Scholar
  15. Nelson, R.R. (1995): “Recent Evolutionary Theorizing about Economic Change,” Journal of Economic Literature, 33, 48–90.Google Scholar
  16. Sakoda, J.M. (1971): “The Checkerboard Model of Social Interaction,”Journal of Mathematical Sociology,1,119–132.Google Scholar
  17. Schelling, Th.C. (1971): “Dynamic Models of Segregation,” Journal of Mathematical Sociology, 1, 143–186.CrossRefGoogle Scholar
  18. Schumpeter, J. (1934): The Theory of Economic Development. Harvard University Press, Cambridge.Google Scholar
  19. Taylor, P.D., and L.B. Jonker (1978): “Evolutionary stable strategies and game dynamics,” Math. Biosc., 40, 145–156.CrossRefGoogle Scholar
  20. Wolfram, St. (1984): “Universality and Complexity in Cellular Automata,” Physica 10D, pp. 1–35.Google Scholar
  21. Young, H.P. (1993): “The Evolution of Conventions,” Econometrica, 61, 57–84.CrossRefGoogle Scholar
  22. Zeeman, E. (1981): “Dynamics of the evolution of animal conflicts,” Journal of Theoretical Biology, 89, 249–270.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Oliver Kirchkamp
    • 1
  1. 1.Wirtschaftstheorie IIIUniversität BonnBonnGermany

Personalised recommendations