Photoemission of Valence Electrons from Metallic Solids in the One-Electron Approximation

  • Stefan Hüfner
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 82)

Abstract

Solids are characterized with respect to the size of the energy gap between valence and conduction band as insulators, semiconductors or metals. In PES and IPES experiments, only metals possess an experimentally accessible (and generally accepted) zero of energy, namely the Fermi energy. The Fermi energy generally shows up as a step in the EDC1 and therefore it is a very convenient experimental reference point. In insulators and semiconductors (although they of course also have a Fermi energy, it does not usually show up clearly in the PE data) the top of the valence band or the bottom of the conduction band are often taken as the experimental zero of energy. These energy points, however, are not very well defined in the experimental spectra. In order to treat only the simplest possible case, the discussion in this chapter will be restricted to metals. The generalisation to insulators or semiconductors is often straightforward.

Keywords

Wave Vector Brillouin Zone Direct Transition Normal Emission Transition Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 6.1
    B. Dardel, D. Malterre, M. Grioni, P. Weibel, Y. Baer: Phys. Rev. Lett. 67, 3144 (1991)CrossRefGoogle Scholar
  2. 6.2
    H. Raether: Springer Tracts Mod. Phys., 38, 84 (Springer, Berlin, Heidelberg 1965)CrossRefGoogle Scholar
  3. 6.3
    C.S. Fadley: In Electron Spectroscopy, Theory, Techniques and Applications, Vol.11, ed. by C.R. Brundle, A.D. Baker (Academic, New York 1978) p.lGoogle Scholar
  4. 6.4
    C.N. Berglund, W.E. Spicer: Phys. Rev. A 136, 1030 and 1044 (1964)Google Scholar
  5. 6.5
    N.V. Smith: In Photoemission in Solids I, ed. by M. Cardona, L. Ley, Topics Appl. Phys., Vol.26 (Springer, Berlin, Heidelberg 1978) Chap.6Google Scholar
  6. 6.6
    G.D. Mahan: Phys. Rev. 163, 612 (1967)CrossRefGoogle Scholar
  7. 6.7
    G.D. Mahan: Phys. Rev. B 2, 4334 (1970)CrossRefGoogle Scholar
  8. 6.8
    C. Caroli, B. Roulet, D. Saint-James: Theory of Photoemission, in Handbook of Surfaces and Interfaces, Vol.1, ed. by L. Dobrzynski (Garland, New York 1978)Google Scholar
  9. 6.9
    W. Eberhardt, E.W. Plummer: Phys. Rev. B 21, 3245 (1978)CrossRefGoogle Scholar
  10. 6.9a
    W. Eberhardt, E.W. Plummer, K. Horn, J. Erskine: Phys. Rev. Lett. 45, 275 (1980)CrossRefGoogle Scholar
  11. 6.10
    H.J. Levinson, E.W. Plummer, P.J. Feibelman: Phys. Rev. Lett. 43, 952 (1979)CrossRefGoogle Scholar
  12. 6.11
    H.J. Levinson, E.W. Plummer, P.J. Feibelman: J. Vac. Sci. Technol. 17, 216 (1980)CrossRefGoogle Scholar
  13. 6.12
    A. Liebsch: Ferienkurs 1980, Elektronenspektroskopische Methoden an Festkörpern und Oberflächen, Vols.I and II, Kernforschungsanlage Jülich GmbH (1980)Google Scholar
  14. 6.13
    C. Kittel: Introduction to Solid State Physics, 5th edn. (Wiley, New York, 1974)Google Scholar
  15. 6.14
    R.Y. Koyoama, N.V. Smith: Phys. Rev. B 2, 3049 (1970)CrossRefGoogle Scholar
  16. 6.15
    J.C. Phillips: in Solid State Physics, Vol.18, ed. by F. Seitz, D. Turnbull (Academic, New York 1966) p.55Google Scholar
  17. 6.16
    B. Feuerbacher, R.F. Willis: J. Phys. C 9, 169 (1976)CrossRefGoogle Scholar
  18. 6.17
    D.J. Spanjaard, D.V. Jepsen, P.M. Marcus: Phys. Rev. B 15, 1728 (1977)CrossRefGoogle Scholar
  19. 6.18
    I. Adawi: Phys. Rev. 134, A 788 (1964)CrossRefGoogle Scholar
  20. 6.19
    W.I. Schaich, N.W. Ashcroft: Solid State Commun. 8, 1959 (1970)CrossRefGoogle Scholar
  21. 6.20
    W.I. Schaich, N.W. Ashcroft: Phys. Rev. B 3, 2452 (1971)CrossRefGoogle Scholar
  22. 6.21
    C. Caroli, D. Lederer-Rozenblatt, B. Roulet, D. Saint-James: Phys. Rev. B 8, 4552 (1973)CrossRefGoogle Scholar
  23. 6.22
    P.J. Feibelman, D.E. Eastman: Phys. Rev. B 10, 4932 (1974)CrossRefGoogle Scholar
  24. 6.23
    A. Liebsch: Phys. Rev. B 13, 544 (1976)CrossRefGoogle Scholar
  25. 6.24
    J.B. Pendry: Surf. Sci. 57, 679 (1976);CrossRefGoogle Scholar
  26. 6.24a
    J.B. Pendry: and Solid State Phys. 8, 2413 (1975)CrossRefGoogle Scholar
  27. 6.25
    W. Bardyszewski, L. Hedin: Physica Scripta 32, 439 (1985)CrossRefGoogle Scholar
  28. 6.26
    W.L. Schaich: In Photoemission in Solids I, ed. by M. Cardona, L. Ley, Topics Appl. Phys., Vol.26 (Springer, Berlin, Heidelberg 1978) Chap.2Google Scholar
  29. 6.27
    N.V. Smith: Crit. Rev. Solid State Sci. 2, 45 (1971);CrossRefGoogle Scholar
  30. 6.27a
    N.V. Smith: and Phys. Rev. B 3, 1862 (1971)CrossRefGoogle Scholar
  31. 6.28
    M.J. Sayers, F.R. McFeely: Phys. Rev. B 17, 3867 (1978)CrossRefGoogle Scholar
  32. 6.29
    L. Ley, M. Cardona, R.A. Pollak: In Photoemission in Solids II, ed. by L. Ley, M. Cardona, Topics Appl. Phys. Vol.27 (Springer, Berlin, Heidelberg 1979) Chap.lCrossRefGoogle Scholar
  33. 6.29a
    T. Grandke, L. Ley, M. Cardona: Solid State Commun. 23, 897 (1977)CrossRefGoogle Scholar
  34. 6.29b
    T. Grandke, L. Ley, M. Cardona: Phys. Rev. Lett. 38, 1033 (1977)CrossRefGoogle Scholar
  35. 6.30
    E. Dietz, F.J. Himpsel: Solid State Commun. 30, 235 (1979)CrossRefGoogle Scholar
  36. 6.31
    J.F. Janak, A.R. Williams, V.L. Moruzzi: Phys. Rev. B 11, 1522 (1975)CrossRefGoogle Scholar
  37. 6.32
    J.B. Pendry, D.T. Titterington: Commun. Phys. 2, 31 (1977)Google Scholar
  38. 6.33
    J.B. Pendry, J.F.L. Hopkinson: J. Phys. C 4, 142 (1978)Google Scholar
  39. 6.34
    J.F.L. Hopkinson, J.B. Pendry, D.J. Titterington: Comput. Phys. Commun. 19, 69 (1980)CrossRefGoogle Scholar
  40. 6.35
    C.G. Larsson, J.B. Pendry: J. Phys. C 14, 3089 (1981)CrossRefGoogle Scholar
  41. 6.36
    For recent calculations of photocurrents by a one-step theory see, e.g., M.A. Hoyland, R.G. Jordan: J. Phys. C 3, 1337 (1991) and references thereinGoogle Scholar
  42. 6.37
    P.O. Nilsson, J. Kanski, C.G. Larsson: Solid State Commun. 36, 111 (1980)CrossRefGoogle Scholar
  43. 6.38
    D. Westphal, D. Spanjaard, A. Goldmann: J. Phys. C 13, 1361 (1980)CrossRefGoogle Scholar
  44. 6.39
    A. Goldmann, A. Rodriguez, R. Feder: Solid State Commun. 45, 449 (1983)CrossRefGoogle Scholar
  45. 6.40
    P.H. Citrin, P. Eisenberger, D.R. Haman: Phys. Rev. Lett. 33, 965 (1974)CrossRefGoogle Scholar
  46. 6.40a
    For an analysis of the temperature dependence of the linewidth of a core level in a metal (Na) see D.M. Riffe, G.K. Wertheim, P.H. Citrin: Phys. Rev. Lett. 67, 116 (1991)CrossRefGoogle Scholar
  47. 6.41
    N.J. Shevchik, D. Liebowitz: Phys. Rev. B 18, 1618 (1978)CrossRefGoogle Scholar
  48. 6.42
    M. Sagurton, N.J. Shevchik: J. Phys. C 11, 2353 (1978)CrossRefGoogle Scholar
  49. 6.43
    M. Sagurton, N.J. Shevchik: J. Phys. C 11, L353 (1978)CrossRefGoogle Scholar
  50. 6.44
    M. Sagurton, N.J. Shevchik: Phys. Rev. B 17, 3859 (1978)CrossRefGoogle Scholar
  51. 6.45
    N.J. Shevchik: Phys. Rev. B 16, 3428 (1977);CrossRefGoogle Scholar
  52. 6.45a
    N.J. Shevchik: and Phys. Rev. B 20, 3029 (1979)CrossRefGoogle Scholar
  53. 6.46
    N.J. Shevchik, D. Liebowitz: Phys. Rev. B 18, 1618 (1978)CrossRefGoogle Scholar
  54. 6.47
    R.C. White, C.S. Fadley, M. Sagurton, P. Roubin, D. Chandesris, J. Lecante, C. Guillot, Z. Hussani: Phys. Rev. B 35, 1147 (1987)CrossRefGoogle Scholar
  55. 6.48
    J.M. Ziman: Principles of the Theory of Solids (Cambridge Univ., Cambridge 1972)CrossRefGoogle Scholar
  56. 6.49
    H. Martensson, P.O. Nilsson, J. Kanski: Appl.Surf. Sci. 11, 652 (1982)Google Scholar
  57. 6.49a
    H. Martensson, C.G. Larsson, P.O. Nilsson: Surf. Sci. 126, 214 (1983)CrossRefGoogle Scholar
  58. 6.50
    S.D. Kevan, D.A. Shirley: Phys. Rev. B 22, 542 (1980)CrossRefGoogle Scholar
  59. 6.51
    R. Matzdorf, G. Meister, A. Goldmann: Surf. Sci. 286, 56 (1993)CrossRefGoogle Scholar
  60. 6.51a
    R. Matzdorf, G. Meister, A. Goldmann: Surf. Sci. 296, 241 (1993)CrossRefGoogle Scholar
  61. 6.51b
    A. Goldmann, R. Matzdorf: Prog. Surf. Sci. 42, 331 (1993)CrossRefGoogle Scholar
  62. 6.51c
    R. Matzdorf, A. Goldmann, J. Braun, G. Borstel: Solid State Commun. 91, 163 (1994). Bringing to light the importance of the angular resolution, for measuring the width in valence bands of metals, in addition to the energy resolution R. Matzdorf, R. Paniago, G. Meister, A. Goldmann: Solid State Commun. 92, 839 (1994). Showing that for Cu(100) the lifetime width of a valence hole state has an energy dependence of (EB-EF)2, thus fulfilling the prediction of Fermi-liquid theory, see (1.24b)CrossRefGoogle Scholar
  63. 6.52a
    R.S. Williams, P.S. Wehner, G. Apai, J. Stöhr, D.A. Shirley, S.P. Kowalczyk: J. Electron Spectrosc. Relat. Phenom. 12, 477 (1977)CrossRefGoogle Scholar
  64. 6.52b
    The width of a valence-band state is the combination of the width of the hole state Γh and the electron state Γe: What one is interested in, is the hole-state width and this is not easy to separate from the total measured width Γexp. The relation between the measured width Γexp, the hole-state width Γh and the electron-state width Γe is given by where vh, vh⊥, ve, ve:⊥ are the group velocities given by MATH, etc., and ϑ is the angle between the electron-detection direction and the surface normal. In the case of a normal emission experiment one has In the case where the dispersion of the initial (hole) state is small with respect to that of the final (electron) state the equation can be further simplified: Finally in the case where vh⊥ vanishes, i.e., where the dispersion of the band perpendicular to the surface is perfectly flat (which holds for surface states, or two- and one-dimensional electronic states) one can identify Γexp(ϑ=0) with Γh which is the imaginary part of the self energy; see N.V. Smith, P. Thiry, Y. Petroff: Phys. Rev. B 47, 15476 (1993)Google Scholar
  65. 6.53
    T. Grandke, L. Ley, M. Cardona: Phys. Rev. B 18, 3847 (1978)CrossRefGoogle Scholar
  66. 6.53a
    P.B. Allen, M. Cardona: Phys. Rev. B 27, 4760 (1983)CrossRefGoogle Scholar
  67. 6.53a
    J. Fraxedas, H.J. Trodahl, S. Gopalan, L. Ley, M. Cardona: Phys. Rev. B 41, 10068(1990)CrossRefGoogle Scholar
  68. 6.54
    M.A. Butler, G.K. Wertheim, D.L. Rousseau, S. Hüfner: Chem. Phys. Lett. 13, 473 (1972)CrossRefGoogle Scholar
  69. 6.55
    J.A. Knapp, F.J. Himpsel, A.R. Williams, D.E. Eastman: Phys. Rev. B 19, 2844 (1979)CrossRefGoogle Scholar
  70. 6.56
    R. Courths, S. Hüfner: Phys. Rep. 112, 53 (1984)CrossRefGoogle Scholar
  71. 6.57
    J. Hermanson: Solid State Commun. 22, 9 (1977)CrossRefGoogle Scholar
  72. 6.58
    W. Eberhardt, F.J. Himpsel: Phys. Rev. B 21, 5572 (1980)CrossRefGoogle Scholar
  73. 6.59
    G. Borstel, W. Braun, M. Neumann, G. Seitz: Phys. Stat. Sol. (b) 95, 453 (1979)CrossRefGoogle Scholar
  74. 6.60
    G. Borstel, M. Neumann, G. Wöhlecke: Phys. Rev. B 23, 3121 (1981)CrossRefGoogle Scholar
  75. 6.61
    H. Wem, R. Courths: Surf. Sci. 162, 29 (1985)CrossRefGoogle Scholar
  76. 6.62
    N.V. Smith, R.L. Benbow, Z. Hurych: Phys. Rev. B 21, 4331 (1980)CrossRefGoogle Scholar
  77. 6.63
    H. Wern: Winkelaufgelöste ultraviolett Photoelektronenspektroskopie an Silber. Thesis, Universität des Saarlandes (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Stefan Hüfner
    • 1
  1. 1.Fachbereich PhysikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations