Advertisement

Photoelectron Diffraction

  • Stefan Hüfner
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 82)

Abstract

So far in this volume, we have neglected a seemingly obvious effect in PES, namely the scattering of the photoexcited electron on its way through the crystal to the surface, by the crystal potential. This is a straightforward scattering problem leading to intensity modulations as a function of electron wavelength and/or crystal orientation. Such intensity modulations have indeed been observed and the method of measuring PES in order to bring out most clearly the scattering features of the final-state electron intensity is called PhotoElectron Diffraction (PED).

Keywords

Polar Angle Forward Scattering EXAFS Data Bulk Plasmon Photoelectron Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 11.1
    T.M. Hayers, J.B. Boyce: Solid State Physics 37, 173 (Academic, New York 1982)Google Scholar
  2. 11.1a
    D.C. Koningsberger, R. Prins (eds.): Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (Wiley, New York 1988) For a recent comprehensive treatment of NEXAFS spectroscopy see J. Stöhr: NEXAFS Spectroscopy, Springer Ser. Surf. Sci., Vol.25 (Springer, Berlin, Heidelberg 1992); NEXAFS means that the EXAFS experiment is performed only near the absorption thresholdGoogle Scholar
  3. 11.1b
    J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, R.C. Albers: J. Am. Chem. Soc. 113, 5135 (1991)CrossRefGoogle Scholar
  4. 11.1c
    L. Tröger, T. Yokoyama, D. Arvanitis, T. Lederer, M. Tischer, K. Baberschke: Phys. Rev. B 49, 888 (1994)CrossRefGoogle Scholar
  5. 11.2
    C.S. Fadley: Progress in Surf. Sci. 16, 275 (1984)CrossRefGoogle Scholar
  6. 11.3
    J.J. Barton, S.W. Rohey, D.A. Shirley: Phys. Rev. B 34, 778 (1986)CrossRefGoogle Scholar
  7. 11.4
    C.S. Fadley: Phys. Scr. T 17, 39 (1987)CrossRefGoogle Scholar
  8. 11.5
    C.S. Fadley: In Synchrotron Radiation Research: Advances in Surface Science, ed. by R.C. Bachrach (Plenum, New York 1989)Google Scholar
  9. 11.6
    W.F. Egelhoff Jr.: Crit. Rev. Solid State Mat. Sci. 16, 213 (1990);CrossRefGoogle Scholar
  10. 11.6a
    W.F. Egelhoff Jr.: Solid State Materials Sciences 16, 213 (1990)CrossRefGoogle Scholar
  11. 11.6b
    L. Fonda: Phys. Stat. Sol. (b) 182, 9 (1994)CrossRefGoogle Scholar
  12. 11.7
    S.A. Chambers: In Advances in Physics ed. by S. Doniach (Taylor and Francis, London 1991)Google Scholar
  13. 11.8
    W.L. Schaich: Phys. Rev. B8, 4028 (1973)Google Scholar
  14. 11.9
    B. Lengeier: In Elektronenspektroskopische Methoden an Festkörpern und Oberflächen, Vols.I and II (Kernforschungsanlage, Jülich 1980)Google Scholar
  15. 11.10
    J. Stöhr, R. Jäger, S. Brennan: Surf. Sci. 117, 503 (1982)CrossRefGoogle Scholar
  16. 11.11
    D.v.d. Marel, G.A. Sawatzky, R. Zeller, F.U. Hillebrecht, J.C. Fuggle: Solid State Commun. 50, 47 (1984)CrossRefGoogle Scholar
  17. 11.12
    W. Speier, T.M. Hayes, J.W. Allen, J.B. Boyce, J.C. Fuggle, M. Campagna: Phys. Rev. Lett. 55, 1693 (1985)CrossRefGoogle Scholar
  18. 11.13
    S. Anderson: Surf. Sci. 15, 231 (1969)CrossRefGoogle Scholar
  19. 11.14
    D.W. Jepson, P.M. Marcus, F. Jona: Phys. Rev. B 5, 3933 (1972)CrossRefGoogle Scholar
  20. 11.15
    Y. Jugnet, G. Grenet, N.S. Prakash, Tran Minh Due, H.C. Poon: Phys. Rev. B 38, 5281 (1988)CrossRefGoogle Scholar
  21. 11.16
    M.L. Xu, J.J. Barton, M.A. van Hove: Phys. Rev. B 39, 8275 (1989)CrossRefGoogle Scholar
  22. 11.17
    W.F. Egelhoff, Jr.: Phys. Rev. Lett. 59, 559 (1987)CrossRefGoogle Scholar
  23. 11.18
    J. Osterwalder, T. Greber, S. Hüfner, L. Schlapbach: Phys. Rev. B 41, 12495 (1990)CrossRefGoogle Scholar
  24. 11.19
    S. Hüfner, J. Osterwalder, T. Greber, L. Schlapbach: Phys. Rev. B 42, 7350 (1990)CrossRefGoogle Scholar
  25. 11.20
    J. Osterwalder, A. Stuck, Th. Greber, L. Schlapbach, S. Hüfner: Unpublished (Université de Fribourg) D.P. Woodruff, A.M. Bradshaw: Rep. Prog. Phys. 57, 1029 (1994)CrossRefGoogle Scholar
  26. 11.20a
    M. Zharnikov, M. Weinelt, P. Zelisch, M. Stichler, H.P. Steinrück: Phys. Rev. Lett. 73, 3548(1994)CrossRefGoogle Scholar
  27. 11.20b
    R. Davis, D.P. Woodruff, O. Schaff, V. Fernandez, K.M. Schindler, Ph. Hofmann, K.U. Weiss, R. Dippel, V. Fritzsche, A.M. Bradshaw: Phys. Rev. Lett. 74, 1621 (1995)CrossRefGoogle Scholar
  28. 11.20c
    Ph. Hofmann, K.M. Schindler Phys. Rev. B 47, 13941 (1993) All these publications deal with the structure determination of adsorbates by photoelectron diffraction The paper by Hofmann and Schindler above describes a new method for the transformation of scanned energy-mode PED spectra from adsorbates into real-space images. The considerations start from the suggestion [CrossRefGoogle Scholar
  29. 11.20d
    J.J. Barton: Phys. Rev. Lett. 61, 1356 (1988)] that PED data can be viewed as a hologram of the surface structure. Adsorbate PED spectra taken in the backscattering (180°) geometry will exhibit large oscillations (if the experiment is performed in the energy dispersion, fixed geometry mode) which are mainly caused by one scatterer. This fact can be utilized to determine the position of the nearest-neighbour substrate atom [CrossRefGoogle Scholar
  30. 11.20e
    V. Fritsche, P.D. Woodruff: Phys. Rev. B 46, 16128 (1992)]. In an actual experiment the modulation function χexp(k) is measured at various emission angles and subsequently Fourier transformed yielding MATH The object of the method is to identify the directions of the main (substrate) backscattering nearest-neighbour atoms relative to the emitter. This method, however, leads to inaccuracies because the scattering phase shifts are neglected. Hofmann and Schindler have improved this procedure by replacing the Fourier transform with the projection of the experimentally determined modulation function χexp(k) onto the calculated modulation function χth(k,r) expected for all possible different substrate atom locations relative to the emitter. This can be considered as replacing the pure harmonic phase function of the Fourier transform by χth(k,r) leading to MATH The c(r) functions for several experimental modulation functions taken in different emission directions are then combined to give a coefficient C(r) derived from the whole data set. These C(r) functions give some measure of the probability of finding a substrate atom at the position r on the grid of possible substrate atom locations. In particular, one can expect pronounced maxima in C(r) at the location of the nearest-neighbour surface atoms, thus allowing the adsorption site to be determinedCrossRefGoogle Scholar
  31. 11.21
    R.S. Saiki, G.S. Herman, M. Jamada, J. Osterwalder, C.S. Fadley: Phys. Rev. Lett. 63, 283 (1989)CrossRefGoogle Scholar
  32. 11.22
    K.U. Weiss, R. Dippel, K.M. Schindler, P. Gardner, V. Fritzsche, A.M. Bradshaw, A.L.D. Kilcoyne, D.P. Woodruff: Phys. Rev. Lett. 69, 3196 (1992) 11.Google Scholar
  33. 22a.
    A. Locatelli, B. Brena, S. Lizzit, G. Comelli, G. Cantero, G. Paolucci, R. Rosei: Phys. Rev. Lett. 73, 90 (1994)CrossRefGoogle Scholar
  34. 22b.
    E.L. Bullock, R. Gunnella, L. Pathey, T. Abukawa, S. Kono, C.R. Natoli, L.S.O. Johansson: Phys. Rev. Lett. 74, 2756 (1995)CrossRefGoogle Scholar
  35. 11.23
    M. Zkarnikov, D. Mehl, M. Weinel, D. Zebisch, H.P. Steinrück: Surf. Sci. 312, 82 (1994). Reporting on the holographic reconstruction of the Pt(110) surface by using multiple wave-number photoelectron diffraction patternsCrossRefGoogle Scholar
  36. 11.24
    A. Santoni, L.J. Terminello, F.J. Himpsel, T. Takahashi: Applied Physics A 52, 299 (1991)CrossRefGoogle Scholar
  37. 11.25
    J. Osterwalder, A. Stuck, T. Greber, P. Aebi, L. Schlapbach, S. Hufner: Proc. 10th VUV Conf., ed. by F.J. Wullenmier, Y. Petroff, N. Nenner (World Scientific, Singapore 1993) p.475Google Scholar
  38. 11.25a
    P. Aebi, J. Osterwalder, R. Fasel, D. Naumovic, L. Schlapbach: Surf. Sci. 307–309, 917 (1994); the Fermi surface of Bi2Sr2Ca1Cu2O8 has been determined by this method byCrossRefGoogle Scholar
  39. 11.25b
    P. Aebi, J. Osterwalder, P. Schwaller, L. Schlapbach, M. Shimoda, T. Mochiku, K. Kadowaki: Phys. Rev. Lett. 72, 2757 (1994)CrossRefGoogle Scholar
  40. 11.26
    T.J. Kreutz, P. Aebi, J. Osterwalder Solid State Commun. 96, 339 (1995).CrossRefGoogle Scholar
  41. 11.26a
    J. Osterwalder, P. Aebi, D. Schwaller, L. Schlapbach, M. Shimoda, T. Mochiku, K. Kadowaki: Appl. Phys. A 60, 247 (1995). Giving examples for the determination of Fermi surfaces with the photoelectron-diffraction techniqueGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Stefan Hüfner
    • 1
  1. 1.Fachbereich PhysikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations