Advertisement

Introduction

  • Stefan Hüfner
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 82)

Abstract

PhotoElectron Spectroscopy (PES) is an old experimental technique still in extensive use. Frequently, this method is also called PhotoEmission Spectroscopy (PES) if instead of the emitted particle, the process that leads to the emission is utilized for its characterization. The phenomenon of photo-emission was detected by Hertz [1.1] in 1887 with the experimental arrangement shown in Fig.1.1. It consists of two arcs d and f, which are driven by the induction coils a and c, respectively. A battery b provided the necessary power and the coils could be activated by the switch e. Hertz studied the behaviour of arc f under the radiation produced in arc d if different materials p were placed between the two arcs d and f. By varying the materials in a systematic way he found out that the ultraviolet radiation emitted by arc d, triggered arc f. We now know that the electrons photo emitted from the electrodes of arc f by the ultraviolet radiation of arc d were actually responsible for triggering arc f. In the following years these experiments were refined [1.2,3] and Einstein in 1905 was able to explain their systematics by invoking the quantum nature of light [1.4].

Keywords

Fermi Energy Transition Matrix Element Synchrotron Radiation Source Fermi Function Sticking Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.1
    H. Hertz: Über einen Einfluss des ultravioletten Lichtes auf die elektrische Entladung (On the influence of ultraviolet light on the electric discharge). Ann. Physik 31, 983 (1887)CrossRefGoogle Scholar
  2. 1.2
    J.J. Thompson: Phil. Mag. 48, 547 (1899)Google Scholar
  3. 1.3
    P. Lenard: Ann. Physik 2, 359 (1900);CrossRefGoogle Scholar
  4. 1.3a
    P. Lenard: Ann. Physik 8, 149 (1902); Wien. Ber. 1649 (1899)CrossRefGoogle Scholar
  5. 1.4
    A. Einstein: Ann. Physik 17, 132 (1905)CrossRefGoogle Scholar
  6. 1.5
    P. Lukirsky, S. Prilezaev: Z. Physik 49, 236 (1928)CrossRefGoogle Scholar
  7. 1.6a
    F. Patthey, J.-M. Imer, W.D. Schneider, Y. Baer, B. Delley: Phys. Rev. B 42, 8864 (1990) M. Grioni: Priv. communicationCrossRefGoogle Scholar
  8. 1.
    1.6b In standard photoemission instruments the energy resolution in the XPS regime is ≈(0.3÷5–0.8) eV and in the UPS regime ≈(10÷15) meV, the best angular resolutions being of the order of 2°; lateral resolutions of ≈5 m can be achieved. There is also an instrument available that combines the energy resolution of 0.3 eV for XPS and 6.0 meV for UPS with an angular resolution of 0.3°. G. Beamson, D. Briggs: High Resolution XPS of Organic Polymers (Wiley, Chichester 1992) Y. Baer: Priv. commun. (1995)Google Scholar
  9. 1.7
    E. Hulpke (ed.): Helium Atom Scattering from Surfaces, Springer Ser. Surf. Sci., Vol.27 (Springer, Berlin, Heidelberg 1992)Google Scholar
  10. 1.8
    H. Ibach: In Electron Spectroscopy for Surface Analysis, ed. by H. Ibach, Topics Curr. Phys., Vol.4 (Springer, Berlin, Heidelberg 1977)CrossRefGoogle Scholar
  11. 1.9
    M.P. Seah: Surf. Interface Anal. 1, 86 (1979)CrossRefGoogle Scholar
  12. 1.10
    C.J. Powell: J. Electron Spectrosc. Relat. Phenom. 47, 197 (1988)CrossRefGoogle Scholar
  13. 1.11
    S. Tanuma, C.J. Powell, D.R. Penn: J. Vac. Sci. Techn. A 8, 2213 (1990)CrossRefGoogle Scholar
  14. 1.12
    K. Siegbahn, C. Nordling, R. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.-E. Karlsson, I. Lindgren, B. Lindberg: ESCA, Atomic, Molecular and Solid State Structure Studies by Means of Electron Spectroscopy, Nova Acta Regiae Soc. Sci., Upsaliensis, Ser.IV, Vol.20 (1967)Google Scholar
  15. 1.13
    Y. Baer, G. Busch: Phys. Rev. Lett. 30, 280 (1973)CrossRefGoogle Scholar
  16. 1.14
    V. Dose: Appl. Phys. 14, 117 (1977)CrossRefGoogle Scholar
  17. 1.15
    W.C. Price: In Electron Spectroscopy, Theory, Techniques and Applications, ed. by C.R. Brundle, A.D. Baker (Academic, New York 1977) Vol.1Google Scholar
  18. 1.16
    A. Goldmann, J. Tejeda, N.J. Shevchik, M. Cardona: Phys. Rev. B 10, 4388 (1974)CrossRefGoogle Scholar
  19. 1.17
    E.E. Koch (ed.): Handbook on Synchrotron Radiation (North-Holland, Amsterdam 1983) Vol.1aGoogle Scholar
  20. 1.18
    E.E. Koch (ed.): Handbook on Synchrotron Radiation (North-Holland, Amsterdam 1983) Vol.1bGoogle Scholar
  21. 1.19
    E.V. Marr (ed.): Handbook on Synchrotron Radiation (North-Holland, Amsterdam 1987) Vol.2Google Scholar
  22. 1.20
    G.S. Brown, D.E. Moncton (eds.): Handbook on Synchrotron Radiation (North-Holland, Amsterdam 1991) Vol.3Google Scholar
  23. 1.21
    S. Ebashi, M. Koch, E. Rubenstein (eds.): Handbook on Synchrotron Radiation (North-Holland, Amsterdam 1991) Vol.4Google Scholar
  24. 1.22
    R.Z. Bachrach (ed.): Synchrotron Radiation Research (Plenum, New York 1992) Vol.1Google Scholar
  25. 1.23
    R.Z. Bachrach (ed.): Synchrotron Radiation Research (Plenum, New York 1992) Vol.2Google Scholar
  26. 1.24
    C. Kunz (ed.): Synchrotron Radiation, Topics Curr. Phys., Vol.10 (Springer, Berlin, Heidelberg 1979)Google Scholar
  27. 1.25
    H. Ibach: Electron Energy Loss Spectrometers, Springer Ser. Opt. Sci., Vol.63 (Springer, Berlin, Heidelberg 1991)Google Scholar
  28. 1.26
    J. Westhof, G. Meister, F. Lodders, R. Matzdorf, R. Henning, E. Janssen, A. Goldmann: Appl. Phys. A 53, 410 (1991)CrossRefGoogle Scholar
  29. 1.27
    C.S. Fadley: In Electron Spectroscopy: Theory, Techniques and Applications II, ed. by C.R. Brundle, A.D. Baker (Academic, New York 1978) and references thereinGoogle Scholar
  30. 1.
    1.28a W. Bardyszewski, L. Hedin: Phys. Scripta 32, 439 (1985) and references therein C.O. Almbladh, L. Hedin: In [1.18] L. Hedin, S. Lundquist: Solid State Physics 23, 1 (Academic, New York 1969) The present author has profited from a preprint made available to him by R. Claessen and by discussions with R. Claessen and L. HedinGoogle Scholar
  31. 1.28b
    R. Claessen, R.O. Anderson, J.W. Allen, C.G. Olson, C Janowitz, W.P. Ellis, S. Harm, M. Kalning, R. Manzke, M. Skibowski: Phys. Rev. Lett. 69, 808 (1992). The spectral function of a Fermi liquid (1.24c) has been reported in this communicationCrossRefGoogle Scholar
  32. 1.28c
    The spectral function observed in a PES experiment has to be modified in the following way if the experiment is performed in an interacting electron gas instead of in a non-interacting one: 1) The energy (pole position) is renormalized [MATH is changed to MATH + Re{∑(k,E)}]. 2) The coherent signal has the finite width Im{E(k,E)}. 3) An incoherent background shows up. 4) PES intensity develops outside the Fermi surface, namely for k > kF.Google Scholar
  33. 1.29
    D. Roy, J.D. Carette: In Electron Spectroscopy for Surface Analysis, ed. by H. Ibach, Topics Curr. Phys., Vol.4 (Springer, Berlin, Heidelberg 1977) Chap.2Google Scholar
  34. 1.30
    A.F. Orchard: In Handbook of X-Ray and Ultraviolett Photoelectron Spectroscopy, ed. by D. Briggs (Heyden, London 1977)Google Scholar
  35. 1.31
    A. Barrie: In Handbook of X-Ray and Ultraviolett Photoelectron Spectroscopy, ed. by D. Briggs (Heyden, London 1977)Google Scholar
  36. 1.32
    G.A. Harrower: Rev. Sci. Instrum. 26, 850 (1955)CrossRefGoogle Scholar
  37. 1.33
    V.V. Zashkvara, M.J. Korsunskii, O.S. Kosmachev: Sov. Phys. Techn. Phys. 11, 96(1966)Google Scholar
  38. 1.34
    H.Z. Sar-El: Rev. Sci. Instrum. 38, 1210 (1967)CrossRefGoogle Scholar
  39. 1.35
    E. Blauth: Z. Phys. 147, 228 (1957)CrossRefGoogle Scholar
  40. 1.36
    W. Mehlhorn: Z. Physik 160, 247 (1960)CrossRefGoogle Scholar
  41. 1.37
    K.L. Wang: J. Phys. E 5, 1193 (1972)CrossRefGoogle Scholar
  42. 1.38
    D. Roy, J.-D. Carette: Can. J. Phys. 49, 2138 (1971)CrossRefGoogle Scholar
  43. 1.39
    D. Roy, J.-D. Carette: J. Appl. Phys. 42, 3601 (1971)CrossRefGoogle Scholar
  44. 1.40
    A.L. Hughes, V. Rojansky: Phys. Rev. 34, 284 (1929)CrossRefGoogle Scholar
  45. 1.41
    A.L. Hughes, J.H. McMillan: Phys. Rev. 34, 291 (1929)CrossRefGoogle Scholar
  46. 1.42
    E.M. Clarke: Can. J. Phys. 32, 764 (1954)CrossRefGoogle Scholar
  47. 1.43
    R. Francois, M. Barat: C.R. Acad. Sc. (Paris) B 266, 1306 (1968)Google Scholar
  48. 1.44
    J.J. Leventhal, G.R. North: Rev. Sci. Instr. 42, 120 (1971)CrossRefGoogle Scholar
  49. 1.45
    D. Roy, M. De Celles, J.D. Carette: Rev. Phys. Appl. 6, 51 (1971)CrossRefGoogle Scholar
  50. 1.46
    H. Ibach: J. Vac. Sci. Technol. 9, 713 (1972)CrossRefGoogle Scholar
  51. 1.47
    P. Marmet, L. Kerwin: Can. J. Phys. 38, 787 (1960)CrossRefGoogle Scholar
  52. 1.48
    Y. Ballu: Rev. Phys. Appl. 3, 46 (1968)CrossRefGoogle Scholar
  53. 1.49
    H. Froitzheim, H. Ibach: Z. Physik 269, 17 (1974)CrossRefGoogle Scholar
  54. 1.50
    H. Froitzheim, H. Ibach, S. Lehwald: Rev. Sci. Instr. 46, 1325 (1975)CrossRefGoogle Scholar
  55. 1.51
    E.M. Purcell: Phys. Rev. 54, 818 (1938)CrossRefGoogle Scholar
  56. 1.52
    W. Steckelmacher: J. Phys. E 6, 1061 (1973)CrossRefGoogle Scholar
  57. 1.53
    H.Y. Sar-El: Rev. Sci. Instr. 41, 561 (1970)CrossRefGoogle Scholar
  58. 1.54
    F.H. Read, J. Corner, R.E. Imhof, J.N.H. Brunt, E. Harting: J. Electr. Spectros. 4, 293 (1974)CrossRefGoogle Scholar
  59. 1.55
    D.W.O. Heddle: J. Phys. E 4, 589 (1971)CrossRefGoogle Scholar
  60. 1.56
    W. Schmitz, W. Mehlhorn: J. Phys. E 5, 64 (1972)CrossRefGoogle Scholar
  61. 1.57
    J.A. Simpson: Rev. Sci. Instrum. 35, 1698 (1964)CrossRefGoogle Scholar
  62. 1.58
    C.E. Kuyatt, J.A. Simpson: Rev. Sci. Instrum. 38, 103 (1967)CrossRefGoogle Scholar
  63. 1.59
    J.A. Simpson: In Methods of Experimental Physics, ed. by V.W. Hughes, H.L. Schultz (Academic, New York 1967) Vol.4aGoogle Scholar
  64. 1.60
    C.E. Kuyatt: In Methods of Experimental Physics, ed. by B. Bederson, W.L. Fite (Academic, New York 1968) Vol.7aGoogle Scholar
  65. 1.61
    C.R. Brundle, A.D. Baker (ed.): Electron Spectroscopy, Theory, Techniques and Applications, Vol.1 (Academic, New York 1977)Google Scholar
  66. 1.62
    D.H. Tomboulian, P.L. Hartmann: Phys. Rev. 102, 1423 (1956)CrossRefGoogle Scholar
  67. 1.63
    W. Gudat: In Elektronenspektroskopische Methoden an Festkörpern und Oberflächen I and II (Kernforschungsanlage Jülich, 1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Stefan Hüfner
    • 1
  1. 1.Fachbereich PhysikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations