Skip to main content

Equatorial Dynamics of the Thermocline: The Equatorial Undercurrent

  • Chapter

Abstract

The Coriolis parameter vanishes at the equator, and this distinguishes the dynamics of the equatorial zone from the oceanic dynamics at higher latitudes. Although the Coriolis acceleration due to the tangential component of the earth’s rotation vector remains different from 0 at the equator, for the large scales of motion under consideration in this chapter its effect is negligible. Whereas the horizontal pressure gradient outside the tropical zone is balanced by the Coriolis acceleration, its absence at the equator leaves the pressure gradient free to produce large relative accelerations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bryan, K. and Cox M.D., 1967: A numerical investigation of the oceanic general circulation. Tellus, XIX, 54–80.

    Google Scholar 

  • Bryden, H.L. and Brady E.C., 1985: Diagnostic study of the three-dimensional circulation of the upper equatorial Pacific Ocean. J. Phys. Ocean., 15, 1255–1273.

    Article  Google Scholar 

  • Cane, M.A., 1979: The response of an equatorial ocean to simple wind stress patterns: II Numerical results. J. Mar. Res., 37, 253–299.

    Google Scholar 

  • Charney, J.G., 1960: Non-linear theory of a wind-driven homogeneous layer near the Equator. Deep Sea Res., 6, 303–310.

    Google Scholar 

  • Charney, J.G., and Spiegel S.L., 1971: Structure of wind-driven equatorial currents in homogeneous oceans. J. Phys. Ocean., 1, 149–160.

    Article  Google Scholar 

  • Fine, R.A., 1987: The penetration of tritium into the tropical Pacific. J.Phys. Ocean., 17, 553–564.

    Article  Google Scholar 

  • Fine, R.A.,Reid J.L., and Ostlund H.G., 1981: Circulation of tritium in the Pacific Ocean. J. Phys. Ocean., 11, 3–14.

    Article  Google Scholar 

  • Fofonoff, N.P. and Montgomery R.B., 1955: The Equatorial undercurrent in the light of the vorticity equation. Tellus, 7, 518–521.

    Article  Google Scholar 

  • Halpern, D. and Weisberg R.H., 1989: Upper ocean thermal and flow fields at 0°, 28° W (Atlantic) and 0°,140° W (Pacific) during 1983–1985. Deep Sea Res., 36, 407–418.

    Article  Google Scholar 

  • Johnson, E.S. and Luther D.S., 1994: Mean momentum balance in the upper and central equatorial Pacific Ocean. J. Geophys. Res., 99, C4, 7685–7705.

    Google Scholar 

  • Liu, Z., 1994: A simple model of the mass exchange between the subtropical and tropical ocean. J. Phys. Ocean, 24, 1153–1165.

    Article  Google Scholar 

  • Liu, Z., Philander S.G.H. and Pacanowski R.C., 1994: A GCM study of subtropical-tropical upper ocean mass exchange. J. Phys. Ocean. 24, 2606–2623.

    Article  Google Scholar 

  • Lukas, R., 1986: The termination of the equatorial undercurrent in the eastern Pacific. Prog. Ocean., 16, 63–90.

    Article  Google Scholar 

  • Luyten, J.R., Pedlosky J. and Stommel H., 1983: The ventilated thermocline. J. Phys. Ocean., 13, 292–309.

    Article  Google Scholar 

  • McCreary, J.P. Jr., 1981: A linear stratified ocean model of the equatorial undercurrent. Phil. Trans. Royal Soc. London, 298, 603–645.

    Google Scholar 

  • McCreary, J.P. Jr., 1985: Modeling equatorial circulation. Ann. Rev. Fluid Mech., 17, 359–409.

    Article  Google Scholar 

  • McCreary, J.P. Jr., and Lu, P., (1994): Interaction between the subtropical and equatorial circulations: The subtropical cell. J. Phys. Ocean., 24, 466–497.

    Google Scholar 

  • McCreary, J.P. Jr. and Yu Z., 1991: Equatorial dynamics in a 2 1/2-layer model. Prog. Ocean., 29, 61–132.

    Article  Google Scholar 

  • Meyers, G., 1979: Annual variation in the slope of the 14° C isotherm along the equator in the Pacific Ocean. J. Phys. Ocean., 9, 885–891.

    Article  Google Scholar 

  • Moore, D.W. and Philander S.G.H., 1977: Modelling of the tropical oceanic circulation. In The Sea, 6, Eds. Goldberg E.D., McCave I.N., O’Brien J.J. and Steele. J.H. Wiley Interscience, New York, pp 319–361.

    Google Scholar 

  • Pedlosky, J., 1987: An inertial theory of the equatorial undercurrent. J. Phys. Ocean, 17, 1978–1985.

    Article  Google Scholar 

  • Pedlosky, J., 1988: Entrainment and the termination of the equatorial undercurrent. J. Phys. Ocean., 18, 880–886.

    Article  Google Scholar 

  • Pedlosky, J., 1991a: The link between western boundary currents and equatorial undercurrents. J. Phys. Ocean., 21, 1553–1558.

    Article  Google Scholar 

  • Pedlosky, J., 1991b: Theoretical developments in ocean circulation theory. Environmental dynamics series, I., CNR/Istituto Veneto di Scienza, Lettere ed Arte. Summer School on Environmental Dynamics, Venetzia, Italia, pp 124.

    Google Scholar 

  • Pedlosky, J., and Samelson R.M., 1989: Wind forcing and the zonal structure of the equatorial undercurrent. J. Phys. Ocean., 19, 1244–1254.

    Article  Google Scholar 

  • Philander, S.G., 1990: El Nino, La Nina, and the southern oscillation. Academic Press, New York, 293 pp.

    Google Scholar 

  • Philander, S.G., and Pacanowski R.C., 1984: Simulation of the seasonal cycle in the tropical Atlantic Ocean. Geophys. Res. Letters, 11, 802–804.

    Article  Google Scholar 

  • Tsuchiya, M., Lukas R., Fine R.A., Firing E., and Lindstrom E., 1989: Source water of the Pacific equatorial undercurrent. Prog. Ocean., 23, 101–147.

    Article  Google Scholar 

  • Wacongne, S., 1989: Dynamical regimes of a fully non linear stratified model of the Atlantic equatorial undercurrent. J. Geophys. Res., 94, 4801–4815.

    Article  Google Scholar 

  • Wacongne, S., 1990: On the difference in strength between Atlantic and Pacific undercurrents. J. Phys. Ocean., 20, 792–799.

    Article  Google Scholar 

  • Wyrtki, K. and Koblinsky B., 1984: Mean water and current structure during the Hawaii to Tahiti shuttle experiment. J. Phys. Ocean., 14, 242–254.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pedlosky, J. (1996). Equatorial Dynamics of the Thermocline: The Equatorial Undercurrent. In: Ocean Circulation Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03204-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03204-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08224-5

  • Online ISBN: 978-3-662-03204-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics