Advertisement

Cascades on Surfaces

  • S. Kh. Aranson
  • V. Z. Grines
Chapter
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 66)

Abstract

In this chapter we give a survey of modern results relating to the qualitative investigation of cascades on surfaces (two-dimensional manifolds); the main attention is devoted to questions of the topological classification of cascades satisfying Axiom A and its various modifications.

Keywords

Periodic Point Homotopy Class Topological Classification Geodesic Lamination Asymptotic Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abikoff, W. (1980): The Real Analytic Theory of Teichmüller Space. Lect. Notes Math. 820. Zbl. 452. 32015Google Scholar
  2. Adler, R.L, Konheim, A.G., Andrew, M.N. (1965): Topological entropy. Trans. Am. Math. Soc. 114, No. 2, 309–319zbMATHCrossRefGoogle Scholar
  3. Alekseev, V.M. (1969): Perron sets and topological Markov measures. Usp. Mat. Nauk 24, No. 5, 227–228. Zbl. 201, 566Google Scholar
  4. Alekseev, V.M. (1976): Symbolic Dynamics (Eleventh Mathematical School). Inst. Mat. Akad. Nauk Ukr. SSR, pp. 6–206Google Scholar
  5. Alekseev, V.M., Yakobson, M.V. (1979): Symbolic dynamics and hyperbolic dynamical systems. In Bowen, R. (ed.): Alekseev, V.M., Yakobson, M.V, 196–240 ( Russian )Google Scholar
  6. Anosov, D.V. (1967): Geodesic flows on closed Riemannian manifolds of negative curvature. Tr. Mat. Inst. Steklova 90 (209 pp.) [English transl.: Proc. Steklov Inst. Math. 90 (1969)] Zbl. 163, 436Google Scholar
  7. Anosov, D.V. (1970): On a class of invariant sets of smooth dynamical systems. Teor. Nelin. Koleb. 2, Tr. 5 Konf. 1969, 39–45. Zbl. 243. 34085Google Scholar
  8. Anosov, D.V. (1985): Structurally stable systems. Tr. Mat. Inst. Steklova 169, 59–93. [English transl.: Proc. Steklov Inst. Mat. 169, 61–95 (1985)] Zbl. 619. 58027Google Scholar
  9. Aranson, S.Kh. (1986): On topological equivalence of foliations with singularities and homeomorphisms with invariant foliations on two-dimensional manifolds. Usp. Mat. Nauk 41, No. 3, 167–168. [English transl.: Russ. Math. Surv. 41, No. 3, 197–198 (1986)] Zbl. 619. 57013Google Scholar
  10. Aranson, S.Kh. (1988): Topological classification of foliations with singularities and homeomorphisms with invariant foliations on closed surfaces. Ch. 1 Foliations. Gor’kij Gos. Univ., 1–195. Dep. VINITI, No. 6887-B 88; (1989): Ch. 2 Homeomorphisms. 1–137. Dep. VINITI, No. 1043-B 89Google Scholar
  11. Aranson, S.Kh. (1990): Topological invariants of vector fields in a disc on the plane with limit sets of Cantor type. Usp. Mat. Nauk 45, No. 4, 139–140. [English transl.: Russ. Math. Surv. 45, No. 4, 157–158 (1990)] Zbl. 715. 57014Google Scholar
  12. Aranson, S.Kh., Grines, V.Z. (1973): On some invariants of dynamical systems on two-dimensional manifolds (necessary and sufficient conditions for topological equivalence of transitive dynamical systems). Mat. Sb., Nov. Ser. 90, No. 3, 372–402. [English transl.: Math. USSR, Sb. 19. 365–393 (1973)] Zbl. 252. 54027Google Scholar
  13. Aranson, S.Kh., Grives, V.Z. (1978): On the representation of minimal sets of flows on two-dimensional manifolds by geodesic lines. Izv. Akad. Nauk SSSR, Ser. Mat. 42, No. 1, 104–129. [English transi.: Math. USSR, Izv. 12, No. 1, 103–124 (1978)] Zbl. 384. 58013Google Scholar
  14. Aranson, S.Kh., Grines, V.Z. (1980): Dynamical systems with minimal entropy on two-dimensional manifolds. Gor’kij Gos. Univ. 1–71. [English transi.: Sel. Math. Sov. 2, No. 2, 123–158 (1982)] Zbl. 528. 58026Google Scholar
  15. Aranson, S.Kh., Grines, V.Z. (1981): Homeomorphisms with minimal entropy on two-dimensional manifolds. Usp. Mat. Nauk.96, No. 2, 175–176. [English transi.: Russ. Math. Surv. 36, No. 2. 163–164 (1981)] Zbl. 471. 58013Google Scholar
  16. Aranson, S.Kh., Grines, V.Z. (1982): On recurrent geodesics without self-intersections on two-dimensional manifolds of negative curvature. In Otrokov, N.F. (ed.): Differ. Integral’nye Uravn., Gor’kij Gos. Univ., 21–24Google Scholar
  17. Aranson, S.Kh., Grines, V.Z. (1984): Classification of dynamical systems on two-dimensional manifolds. Tr. IX Mezhdunar. Konf. po Nelineinym Kolebaniyam. Kachestvennye Metody (1981). Inst. Mat. Akad. Nauk Ukr. SSR 2. Naukova Dumka, Kiev, 23–25Google Scholar
  18. Aranson, S.Kh., Grines, V.Z. (1985): Dynamical Systems I: Flows on Two-Dimensional Manifolds. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 1, 229–240. [English transi. in: Encycl. Math. Sci. 1, 219–229. Springer-Verlag, Berlin Heidelberg New York 1988] Zbl. 605. 58001Google Scholar
  19. Aranson, S.Kh., Grines, V.Z. (1986): Topological classification of flows on closed two-dimensional manifolds. Usp. Mat. Nauk 41, No. 1, 149–169. [English transi.: Russ. Math. Surv. 41, No. 1, 183–208 (1986)] Zbl. 615. 58015Google Scholar
  20. Aranson, S.Kh., Grines, V.Z. (1990): The topological classification of cascades on closed two-dimensional manifolds. Usp. Mat. Nauk 45, No. 1, 3–32. [English transi: Russ. Math. Surv. 45, No. 1, 1–35 (1990)] Zbl. 705. 58038Google Scholar
  21. Aranson, S.Kh., Zhuzhoma, E.V. (1984): Classification of transitive foliations on the sphere with four singularities of “spine” type. In Leontovich-Andronov, E.A. (ed.): Tr. Mezhvuz. Temat. Sb. Nauchn. Metody Kachestvennoj Teorii Differents. Uravn., Gor’kij Gos. Univ. 3–10. [English transi.: Sel. Math. Sov. 9, No. 2, 117–121 (1990)] Zbl. 742. 57014Google Scholar
  22. Arnoux, P., Yoccoz, C. (1981): Construction de difféomorphismes pseudo-Anosov. C.R. Acad. Sci., Paris, Ser. I 292, No. 1, 75–78. Zbl. 478. 58023Google Scholar
  23. Batterson, S. (1980): Constructing Smale diffeomorphisms on compact surfaces. Trans. Am. Math. Soc. 257, 237–245. Zbl. 426. 58019Google Scholar
  24. Bers, L. (1978): An extremal problem for quasiconformal mappings and a theorem of Thurston. Acta Math. 141, 73–98. Zbl. 389. 30018Google Scholar
  25. Bezdenezhnykh A.N., Grines, V.Z. (1985a): Realization of gradient-like diffeomorphisms of two-dimensional manifolds. In Otrokov, N.F. (ed.): Differ. Integral’nye Uravn., Gor’kij Gos. Univ., 33–37Google Scholar
  26. Bezdenezhnykh A.N., Grines, V.Z. (1985b): Diffeomorphisms with orientable hetero-clinic sets on two-dimensional manifolds. In Leontovich-Andronov, E.A. (ed.): Tr. Mezhvuz. Temat. Sb. Nauchn. Metody Kachestvennoj Teorii Differents. Uravn., Gor’kij Gos. Univ., 139–152Google Scholar
  27. Bezdenezhnykh A.N., Grines, V.Z. (1985c): Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. Part 1, in Leontovich-Andronov, E.A. (ed.): Tr. Mezhvuz. Temat. Sb. Nauchn. Metody Kachestvennoj Teorii Differents. Uravn., Gor’kij Gos. Univ., 22–38; Part 2 (1987): (ibid), 24–31Google Scholar
  28. Borevich, E.A. (1980): Conditions for the topological equivalence of two-dimensional Morse-Smale diffeomorphisms. Izv. Vyssh. Uchebn. Zaved., Mat. 1980, No. 11, 12–17. [English transl.: Sov. Math. 24, No. 11, 11–17 (1980)] Zbl. 463. 58017Google Scholar
  29. Borevich, E.A. (1981): Conditions for the topological equivalence of two-dimensional Morse-Smale diffeomorphisms Differ. Uravn. 17, No. 8, 1481–1482. Zbl. 489. 58017;Google Scholar
  30. Topological equivalence of two-dimensional Morse-Smale diffeomorphisms without heteroclinic points (1986): Izv. Vyssh. Uchebn. Zaved., Mat. 1986, No. 9, 6–9. [English transl.: Soy. Math. 30, No. 9, 6–11 (1986)] Zbl. 641. 58018Google Scholar
  31. Borevich, E.A. (1984): Topological equivalence of two-dimensional Morse-Smale diffeomorphisms Izv. Vyssh. Uchebn. Zaved., Mat. 1984, No. 4, 3–6. [English transl.: Soy. Math. 28, No. 4, 1–15 (1984)] Zbl. 545. 58030Google Scholar
  32. Borevich, E.A. (1989): Two-dimensional Morse-Smale diffeomorphisms with oriented heteroclinic connections. Izv. Vyssh. Uchebn. Zaved., Mat. 1989, No. 9, 77–79.MathSciNetzbMATHGoogle Scholar
  33. English transi.: Soy. Math. 33,No. 9, 76–78 (1989)] Zbl. 693.58008Google Scholar
  34. Bowen, R. (1970): Topological entropy and axiom A. Global analysis. Proc. Symp.Google Scholar
  35. Pure Math. 14,23–41. Zbl. 207,544Google Scholar
  36. Bowen, R. (1971): Periodic points and measures for axiom A-diffeomorphisms. Trans. Am. Math. Soc. 154, 377–397. Zbl. 212, 291Google Scholar
  37. Fedotov, A.G. (1980): On Williams solenoids and their realization in two-dimensional dynamical systems. Dokl. Akad. Nauk SSSR 252, 801–804. [English transl.: Sov. Math., Dokl. 21, 835–839 (1980)] Zbl. 489. 58019Google Scholar
  38. Gerber, M., Katok, A. (1982): Smooth models of Thurston’s pseudo-Anosov maps. Ann. Sci. Ec. Norm. Super., IV. Ser. 15, No. 1, 173–204. Zbl. 580.58029. See also Gerber, M. (1985): Conditional stability and real analytic pseudo-Anosov maps. Mem. Am. Math. Soc. 321. Zbl. 572. 58018.Google Scholar
  39. Gilman, J (1981): On the Nielsen type and the classification for the mapping-class group. Adv. Math. 40, No. 1, 68–96. Zbl. 474. 57005Google Scholar
  40. Gilman, J. (1982): Determining Thurston classes using Nielsen types. Trans. Am. Math. Soc. 272, No. 2, 669–675. Zbl. 507. 57005Google Scholar
  41. Grines, V.Z. (1974): On the topological equivalence of one-dimensional basic sets of diffeomorphisms on two-dimensional manifolds. Usp. Mat. Nauk 29, No. 6, 163–164. Zbl. 304. 58009Google Scholar
  42. Grines, V.Z. (1975): On the topological conjugacy of diffeomorphisms of a two-dimensional manifold onto one-dimensional basic sets, Part 1. Tr. Mosk. Mat. O.-va 32,35–61. Part 2 (ibid) 34,243–252 (1977). [English transi.: Trans. Mosc. Math. Soc. 32,31–56. Part 2 (ibid) 34,237–245 (1978)] Zbl. 355.58011; Zbl. 417.58014Google Scholar
  43. Grines, V.Z. (1982): Diffeomorphisms of two-dimensional manifolds with transitive foliations. In Leontovich-Andronov, E.A. (ed.): Tr. Mezhvuz. Temat. Sb. Nauchn. Metody Kachestvennoj Teorii Differents. Uravn., Gor’kij Gos. Univ. 62–72. [English transl.: Transl., Ser. 2, Am. Math. Soc. 149, 193–199 (1991)] Zbl. 598. 58034Google Scholar
  44. Grines, V.Z., Kalaj, Kh.Kh. (1985): Topological equivalence of attractors on two-dimensional manifolds. In Otrokov, N.F. (ed.): Differ. Integral’nye Uravn., Gor’kij Gos. Univ., 104–105Google Scholar
  45. Grines, V.Z., Kalaj, Kh.Kh. (1988a): On the topological equivalence of diffeomorphisms with non-trivial basic sets on two-dimensional manifolds. In LeontovichAndronov, E.A. (ed.): Tr. Mezhvuz. Temat. Sb. Nauchn. Metody Kachestvennoj Teorii Differents. Uravn., i Teorii Bifurkatsij. Gor’kij Gos. Univ., 40–48Google Scholar
  46. Grines, V.Z., Kalaj, Kh.Kh. (1988b): The topological classification of basic sets without pairs of conjugate points of A-diffeomorphisms on surfaces. Gor’kij Gos. Univ., 1–95. Dep. VINITI, No. 1137-B 88Google Scholar
  47. Handel, M., Thurston, W.P. (1985): New proofs of some results of Nielsen. Adv. Math. 56, No. 2, 173–191. Zbl. 584. 57007Google Scholar
  48. Hiraide, K. (1987): Expansive homeomorphisms of compact surfaces are pseudoAnosov. Proc. Japan Acad., Ser. A 63, No. 9, 337–338. Zbl. 663.58024; Osaka J. Math. 27 (1990), No. 1, 117–162. Zbl. 713. 58042Google Scholar
  49. Ivanov, N.V. (1982a): Nielsen numbers of mappings of surfaces. Zap. Nauchn. Semin. LOMI 122, No. 4, 56–65. Nauka, Leningrad. [English transl.: J. Sov. Math. 26, 1636–1671 (1984)] Zbl. 492. 55001Google Scholar
  50. Ivanov, N.V. (1982b): Entropy and Nielsen numbers. Dokl. Akad. Nauk SSSR 265, 284–287. [English transl.: Sov. Math., Dokl. 26, 63–66 (1982)] Zbl. 515.54016 Jiang, B. (1981): Fixed points of surface homeomorphisms. Bull. Am. Math. Soc., New Ser. 5, No. 2, 176–178. Zbl. 479. 55003Google Scholar
  51. Jiang, B. (1983): Lectures on Nielsen fixed point theory. Am. Math. Soc., Contemp. Math. 14. Providence. Zbl. 512. 55003Google Scholar
  52. Kalay, Kh.Kh. (1988): On the topological equivalence of A-diffeomorphisms with basic sets without pairs of conjugate points on two-dimensional manifolds. Gor’kij Gos. Univ., 1–62. Dep. VINITI, No. 8822-B 88Google Scholar
  53. Katok, A. (1979): Bernoulli diffeomorphisms on surfaces. Ann. Math., II. Ser. 110, No. 3, 529–547. Zbl. 435. 58021Google Scholar
  54. Krushkal’, S.L., Apanasov, B.N., Gusevskij, N.A. (1981): Kleinian Groups and Uniformization in Examples and Problems. Nauka, Novosibirsk. [English transl.: Transl. Math. Monogr., Vol. 62, Providence. (1986)] Zbl. 485. 30001Google Scholar
  55. Liao, S.T. (1980): On the stability conjecture. Chin. Ann. Math. 1, No. 1, 9–30. Zbl. 449. 58013Google Scholar
  56. Marié, R. (1982): An ergodic closing lemma. Ann. Math., II. Ser. 116, No. 2, 503–540. Zbl. 511. 58029Google Scholar
  57. Miller, R.T. (1982): Geodesic laminations from Nielsen’s viewpoint. Adv. Math. 45, No. 2, 189–212. Zbl. 496. 57003Google Scholar
  58. Nielsen, J. (1927): Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. I. Acta Math. 50, 189–358. FdM 53,545; II. Acta Math. 53 (1929), 1–76. FdM 55,971; III. Acta Math. 58 (1932), 87–167. Zbl. 4, 275Google Scholar
  59. Nielsen, J. (1937): Die Struktur periodischer Transformationen von Flächen. Det. Kgl. Danske Vid. Selsk., Mat.-Fys. Medd. 15, 1–77. Zbl. 17, 133Google Scholar
  60. Nielsen, J. (1944): Surface transformation classes of algebraically finite type. Det. Kgl. Danske Vid. Selsk., Mat.-Fys. Medd. 21, 1–89Google Scholar
  61. Nitecki, Z. (1971): Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms. MIT Press, Cambridge ( Mass.) London. Zbl. 246. 58012Google Scholar
  62. O’Brien, T. (1970): Expansive homeomorphisms on compact manifolds. Proc. Am.Google Scholar
  63. Math. Soc. 24, No. 2, 767–771. Zbl. 195, 526Google Scholar
  64. O’Brien, T, Reddy, W. (1970): Each compact orientable surface of positive genus admits an expansive homeomorphism. Pac. J. Math. 35, No. 3, 737–742. Zbl. 206, 524Google Scholar
  65. Palis, J., de Melo, W. (1982): Geometric Theory of Dynamical Systems. An Introduction. Springer-Verlag, Berlin Heidelberg New York. Zbl. 491. 58001Google Scholar
  66. Peixoto, M. (1973): On the classification of flows on two-manifolds. Dynamical Systems. Proc. Symp., Univ. Bahia, Salvador, Brazil, 1971, 389–419. Zbl. 299. 58011Google Scholar
  67. Plykin, R.V. (1971): On the topology of basic sets of Smale diffeomorphisms Mat. Sb., Nov. Ser. 84, 301–312. [English transi.: Math. USSR, Sb. 13, 297–307 (1971)] Zbl. 211, 563Google Scholar
  68. Plykin, R.V. (1974): Sources and sinks of A-diffeomorphisms of surfaces. Mat. Sb., Nov. Ser. 94, 243–264. [English transl.: Math. USSR, Sb. 23, 233–253 (1975)] Zbl. 324. 58013Google Scholar
  69. Plykin, R.V. (1977): On the existence of attracting (repelling) periodic points of A-diffeomorphisms of the projective plane and the Klein bottle. Usp. Mat. Nauk 32, No. 3, 179. Zbl. 363. 58010Google Scholar
  70. Plykin, R.V. (1980a): On hyperbolic attractors of diffeomorphisms. Usp. Mat. Nauk 35, No. 3, 94–104. [English transl.: Russ. Math. Surv. 35, No. 3, 109–121 (1980)] Zbl. 445. 58016Google Scholar
  71. Plykin, R.V. (1980b): On hyperbolic attractors of diffeomorphisms (non-orientable case). Usp. Mat. Nauk 35, No. 4, 205–206. [English transi.: Russ. Math. Surv. 35, No. 4, 186–187 (1980)] Zbl. 448. 58011Google Scholar
  72. Plykin, R.V. (1984): On the geometry of hyperbolic attractors of smooth cascades. Usp. Mat. Nauk 39, No. 6, 75–113. [English transl.: Russ. Math. Surv. 39, No. 6, 85–131 (1984)] Zbl. 584. 58038Google Scholar
  73. Poénaru, V. et al. (1979): Travaux de Thurston sur les surfaces. Astérisque 66–67. Zbl. 446.57005–008, 011, 017, 019Google Scholar
  74. Robinson, R.C., Williams, R.F. (1973): Finite stability is not generic. Dynamical Systems. Proc. Symp., Univ. Bahia, Salvador, Brazil, 1971, 451–462. Zbl. 305. 58009Google Scholar
  75. Sanami, A. (1981): The stability theorems for discrete dynamical systems on two-dimensional manifolds. Proc. Japan Acad., Ser. A 57, No. 8, 403–407. Zbl. 509.58028; Nagoya Math. J. 90 (1983), 1–55. Zbl. 515. 58022Google Scholar
  76. Shub, M., Sullivan, D. (1975): Homology theory and dynamical systems. Topology 14, No. 2, 109–132. Zbl. 408. 58023Google Scholar
  77. Sinai, Ya.G. (1968): Markov partitions and C-diffeomorphisms. Funkts. Anal. Prilozh. 2, No. 1, 64–69. [English transl.: Funct. Anal. Appl. 2, 61–82 (1968)] Zbl. 182, 550Google Scholar
  78. Solodov, V.V. (1982): Components of topological foliations. Mat. Sb., Nov. Ser. 119, 340–354.MathSciNetGoogle Scholar
  79. English transl.: Math. USSR, Sb. 47, 329–343 (1984)] Zbl. 518.57014 Smale, S. (1967): Differentiable dynamical systems. Bull. Am. Math. Soc. 73,No. 6Google Scholar
  80. 747-.
    Zbl. 202,552Google Scholar
  81. Thurston, W. (1976): On geometry and dynamics of diffeomorphisms of surface. [Preprint, 1–18.] Bull. Am. Math. Soc. 19 (1988), No. 2, 417–431. Zbl. 674. 57008Google Scholar
  82. Umanskij, Ya.L. (1990): Necessary and sufficient conditions for the topological equivalence of three-dimensional Morse-Smale dynamical systems with a finite number of singular trajectories. Mat. Sb. 181, 212–239.Google Scholar
  83. English transl.: Math. USSR, Sb. 69, 227–253 (1991)] Zbl. 717. 58033Google Scholar
  84. Williams, R.F. (1967): One-dimensional nonwandering sets. Topology 6, No. 4, 473487. Zbl. 159, 537Google Scholar
  85. Williams, R.F. (1970): The DA-maps of Smale and structural stability. Global Analysis. Proc. Symp. Pure Math. 14, 329–334. Zbl. 213, 503Google Scholar
  86. Zieschang, H., Vogt, E., Coldewey, H.-D. (1980): Surfaces and Planar Discontinuous Groups. Lect. Notes Math. 835. Zbl. 438.57001, Zbl. 204, 240Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • S. Kh. Aranson
  • V. Z. Grines

There are no affiliations available

Personalised recommendations